Skip to main content
Log in

Antidepressant drugs and ethanol: Behavioral and pharmacokinetic interactions in mice

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The interactions between ethanol and antidepressant drugs (both tricyclics and newer non-tricyclics) were studied in mice. The ability of these drugs to enhance the sedative effects of ethanol at two different doses (3.2 and 4.0 g/kg) was measured. The percentage of mice losing the righting-reflex was used for the lower dose, and the duration of ethanol-induced sleep was used at the higher dose. The relative order of potency was amitriptyline>-imipramine>maprotiline=mianserin>desipramine>-chlorimipramine>iprindole>-alaproclate>norzimelidine>-zimelidine. Amitriptyline (60 mg/kg) caused death in all mice when combined with 4.0 g/kg ethanol. Clinically established antidepressants which enhanced ethanol sedation only at doses considerably above therapeutic levels were zimelidine and iprindole. The relative potency of the antidepressants to enhance ethanol sedation is correlated with their inherent sedative properties which are in turn related to their ability to block central 5-HT,α-NA, muscarinic and H1-receptors. Amitriptyline (20 mg/kg) was found to increase ethanol plasma levels to 202, 167 and 132% of control values at 30, 60 and 90 min after ethanol administration, respectively. Desipramine, mianserin and alaproclate also increased ethanol plasma levels initially, but to a lesser extent. These findings suggest that in addition to their sedative effect, several antidepressants, particularly amitriptyline, are likely to interact with ethanol by increasing its concentration in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, A., Holmberg, G. Preliminary clinical test of zimelidine (H 102/09), a new 5-HT uptake inhibitor. Acta psychiat. scand.59, 45–58 (1979).

    PubMed  Google Scholar 

  • Anonymous: Jaundice from iprindole (Prondol). Drug Ther. Bull.9, 10–11 (1971).

  • Allen, L. E., Ferguson, H. C., McKinney, G. R. A survey of selected drugs on behavior performance in ethanol-treated rats. Eur. J. Pharmacol.15, 371–374 (1971).

    PubMed  Google Scholar 

  • Bárány, E. H. Organic anion and cation transportin vitro by dog choroid plexus: effects of neuroleptics and tricyclic antidepressants. Acta Pharmacol. et Toxicol.44, 146–155 (1979).

    Google Scholar 

  • Benešová, O., Náhunek, K. Correlation between the experimental data from animal studies and therapeutical effects of antidepressant drugs. Psychopharmacologia20, 337–347 (1971).

    PubMed  Google Scholar 

  • Bevan, P., Bradshaw, C. M., Szabadi, E. Effects of iprindole on responses of single cortical and caudate neurones to monoamines and acetylcholine. Br. J. Pharmac.55, 17–25 (1975).

    Google Scholar 

  • Blackwell, B., Lipkin, J. O., Meyer, J. H., Kuzma, R., Boulter, W. V. Dose responses and relationships between anticholinergic activity and mood with tricyclic antidepressants. Psychopharmacologia25, 205–217 (1972).

    PubMed  Google Scholar 

  • Bonnichsen, R., Maehly, A. C., Sköld, G. A report on autopsy cases involving amitriptyline and nortriptyline. Z. Rechtsmedizin J. Legal Med.67, 190–200 (1970).

    Google Scholar 

  • Brodie, B. B., Dick, P., Kielholz, P., Pöldinger, W., Theobald, W. Preliminary pharmacological and clinical results with desmethylimipramine (DMI) G 35020, a metabolite of imipramine. Psychopharmacologia2, 467–474 (1961).

    PubMed  Google Scholar 

  • Brodie, B. B. Of mice, microsomes and man. Pharmacologist6, 12–26 (1964).

    Google Scholar 

  • Brogden, R. N., Heel, R. C., Speight, T. M., Avery, G. S. Mianserin: A review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs16, 273–301 (1978).

    PubMed  Google Scholar 

  • Buijten, J. C. An automatic ultra-micro distillation technique for determination of ethanol in blood and urine. Blutalkohol12, 393–398 (1975).

    Google Scholar 

  • Carlsson, A. The contribution of drug research to investigating the nature of endogenous depression. Pharmakopsych.9, 2–10 (1976).

    Google Scholar 

  • Carlsson, A. The influence of antidepressants on central monoaminergic systems. In: Neurotransmission and Disturbed Behavior (van Praag, H. M., Bruinvels, J., eds.), pp. 19–33. Utrecht: Bohn, Scheltema and Holkema. 1977.

    Google Scholar 

  • Carlsson, A., Lindqvist, M. Effects of antidepressant agents on the synthesis of brain monoamines. J. Neural Transm.43, 73–91 (1978).

    PubMed  Google Scholar 

  • Clifl, A. D. Treatment of depression in general practice. A study of iprindole. The Practitioner205, 89–93 (1970).

    PubMed  Google Scholar 

  • Coppen, A., Rama Rao, V. A., Swade, C., Wood, K. Zimelidine: a therapeutic and pharmacokinetic study in depression. Psychopharmacology63, 199–202 (1979).

    PubMed  Google Scholar 

  • Cott, J. M., Ögren, S.-O., Lindgren, J.-E., Lundström, J.: Behavioral and metabolic interactions between antidepressants and sedative-hypnotics in mice. Presented at the 12th Congress of Collegium Internationale Neuro-Psychopharmacologicum, Gothenburg, June 22–26, 1980.

  • Cox, J., Moore, G., Evans, L. Zimelidine: a new antidepressant? Prog. Neuro-psychopharmac.2, 379–384 (1978).

    Google Scholar 

  • Dews, P. B. Interspecies differences in drug effects: behavioral. In: Psychotherapeutic Drugs, Part 1, Principles (Usdin, E., Forrest, I. S., eds.), pp. 175–224. New York: Marcel Dekker. 1976.

    Google Scholar 

  • Dunnett, C. W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Statist. Ass.50, 1096–1121 (1955).

    Google Scholar 

  • Gebhart, G. F., Plaa, G. L., Mitchell, C. L. The effects of ethanol alone and in combination with phenobarbital, chlorpromazine, or chlordiazepoxide. Toxicol. Appl. Pharmacol.15, 405–414 (1969).

    PubMed  Google Scholar 

  • Hall, H., Ögren, S.-O.: Effect of antidepressant drugs on different receptors in the brain. Eur. J. Pharmacol. (Submitted for publication.)

  • Hall, H., Thor, L. Evaluation of a semiautomatic filtration technique for receptor binding studies. Life Sci.24, 2293–2300 (1979).

    PubMed  Google Scholar 

  • Hall, R. C., Carter, R., Brown, D., Kendall, M. J. The effect of desmethylimipramine on the absorption of alcohol and paracetamol. Postgrad. Med. J.52, 139–142 (1976).

    Google Scholar 

  • Halliwell, G., Quintan, R. M., Williams, F. E. A comparison of imipramine, chlorpromazine and related drugs in various tests involving autonomie functions and antagonism of reserpine. Brit. J. Pharmac.23, 330–350 (1964).

    Google Scholar 

  • Hawkins, R. D., Kalant, H. The metabolism of ethanol and its metabolic effects. Pharmacol. Rev.24, 67–157 (1972).

    PubMed  Google Scholar 

  • Hughes, F. W., Forney, R. B. Delayed audiofeedback (DAF) for induction of anxiety. JAMA185, 90–92 (1963).

    Google Scholar 

  • Jones, R. S. C. Noradrenaline sensitive adenylate cyclase in rat cerebral cortex: effects of antidepressant drugs. Neuropharmacology17, 771 to 774 (1978).

    Google Scholar 

  • Jukes, A. M. Maprotiline (Ludiomil): side-effects and overdosage. J. Int. Med. Res.3, suppl. 2, 126–131 (1975).

    Google Scholar 

  • Kato, R., Chiesara, E., Vassanelli, P. Further studies on the inhibition and stimulation of microsomal drug-metabolizing enzymes of rat liver by various compounds. Biochem. Pharmacol.13, 69–83 (1964).

    PubMed  Google Scholar 

  • Koe, B. K. Effects of antidepressant drugs on brain catecholamines and serotonin. In: Antidepressants (Fielding, S., Lal, H., eds.), pp. 143–180. Mount Kisco, N.Y.: Futura. Pub. Co. 1975.

    Google Scholar 

  • Koff, R. S., Fitts, J. J. Chlorpromazine inhibition of ethanol metabolism without prevention of fatty liver. Biochem. Med.6, 77–81 (1972).

    PubMed  Google Scholar 

  • Landauer, A. A., Milner, G., Patman, J. Alcohol and amitriptyline effects on skills related to driving behavior. Science163, 1467–1468 (1969).

    PubMed  Google Scholar 

  • Liljequist, R., Seppälä, T., Mattila, M. J. Amitriptyline- and mianserininduced changes in acquisition of paired-association learning-task. Br. J. Clin. Pharmac.5, 149–153 (1978).

    Google Scholar 

  • Liljequist, R., Linnoila, M., Mattila, M. J. Effect of two weeks' treatment with chlorimipramine and nortriptyline, alone or in combination with alcohol, on learning and memory. Psychopharmacologia (Berl.)39, 181–186 (1974).

    Google Scholar 

  • Lindberg, U. H., Thorberg, S.-O., Bengtsson, S., Renyi, A. L., Ross, S. B., Ögren, S.-O. Inhibitors of neuronal monoamine uptake. 2. Selective inhibition of 5-hydroxytryptamine uptake byα-amino acid esters of phenethyl alcohols. J. Med. Chem.21, 448–456 (1978).

    PubMed  Google Scholar 

  • Liu, S.-J., Huang, C. L., Waters, I. W. Interactions of tricyclic antidepressants and barbiturates in barbiturate-tolerant and nontolerant rats. J. Pharmacol. Exp. Ther.194, 285–295 (1975).

    PubMed  Google Scholar 

  • Lockett, M. F., Milner, G. Combining the antidepressant drugs. Brit. Med. J.1, 921 (1965).

    Google Scholar 

  • Maitre, L., Waldmeir, P. C., Greengrass, P. M., Jaekel, J., Sedlacek, S., Delini-Stula, A. Maprotiline-its position as an anti-depressant in the light of recent neuropharmacological and neurobiochemical findings. J. Int. Med. Res.3, Suppl. 2, 2–15 (1975).

    Google Scholar 

  • Maj, J., Sowinska, H., Baran, L., Gancarczyk, L., Rawlow, A. The central antiserotonergic action of mianserin. Psychopharmacology59, 79–84 (1978).

    PubMed  Google Scholar 

  • Milner, G. The effect of antidepressants and “tranquillizers” on the response of mice to ethanol. Br. J. Pharmac.34, 370–376 (1968).

    Google Scholar 

  • Milner, G., Kakulas, B. A. The potentiation by amitriptyline of liver changes induced by ethanol in mice. Pathology1, 113–118 (1969).

    PubMed  Google Scholar 

  • Munksgaard, E. C. Concentrations of amitriptyline and its metabolites in urine, blood and tissues in fatal amitriptyline poisoning. Acta Pharmacol. et Toxicol.27, 129–134 (1969).

    Google Scholar 

  • Ögren, S.-O., Fuxe, K., Agnati, L. F., Gustafsson, J. Å., Jonsson, G., Holm, A. C. Reevaluation of the indolamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs. J. Neural Transm.46, 85–103 (1979).

    PubMed  Google Scholar 

  • Ögren, S.-O., Cott, J. M., Cott, P. R.: Antidepressant-induced neurotoxicity and sedation: relationship to receptor binding properties. (In preparation.)

  • Palmer, G. C. Influence of tricyclic antidepressants on the adenylate cyclase-phosphodiesterase system in the rat cortex. Neuropharmacology15, 1–7 (1976).

    PubMed  Google Scholar 

  • Pardridge, W. M., Crawford, I. L., Connor, J. D. Permeability changes in the blood-brain barrier induced by nortriptyline and chlorpromazine. Toxicol. Appl. Pharmacol.26, 49–57 (1973).

    PubMed  Google Scholar 

  • Patman, J., Landauer, A. A., Milner, G. The combined effect of alcohol and amitriptyline on skills similar to motor-car driving. Med. J. Aust.8, 946–949 (1969).

    Google Scholar 

  • Preskorn, S., Alward, P.:The effect of amitriptyline on brain ethanol concentrations. Society for Neuroscience Abstracts, 9th Annual Meeting, Atlanta, 659 (1979).

  • Quach, T. T., Duchemin, A. M., Rose, C., Schwartz, S. C. In vivo occupation of cerebral histamine H1-receptors evaluated with3H-mepyramine may predict sedative properties of psychotropic drugs. Eur. J. Pharmacol.60, 391–392 (1979).

    PubMed  Google Scholar 

  • Richelson, E. Tricyclic antidepressants and histamine H1-receptors. Mayo Clin. Proc.54, 669–674 (1979).

    PubMed  Google Scholar 

  • Rosloff, B. N., Davis, J. M. Decrease in brain NE turnover after chronic DMI treatment; no effect with iprindole. Psychopharmacology56, 335–341 (1978).

    PubMed  Google Scholar 

  • Ross, S. B., Renyi, A. L., Ögren, S.-O. A comparison of the inhibiting properties of iprindole and imipramine on the uptake of 5-hydroxytryptamine and noradrenaline in brain slices. Life Sci.10, 1267–1277 (1971).

    Google Scholar 

  • Ross, S. B., Renyi, A. L. Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of3H-noradrenaline and14C-5-hydroxytryptamine in slices and crude synaptosome preparations of the mid-brain-hypothalamus region of the rat brain. Acta Pharmacol. et Toxicol.36, 382–394 (1975 a).

    Google Scholar 

  • Ross, S. B., Renyi, A. L. Tricyclic antidepressant agents. II. Effect of oral administration on the uptake of3H-noradrenaline and14C-5-hydroxytryptamine in slices of the midbrain-hypothalamus region of the rat. Acta Pharmacol. et Toxicol.36, 395–408 (1975 b).

    Google Scholar 

  • Ross, S. B., Renyi, A. L. Inhibition of the neuronal uptake of 5-hydroxytryptamine and noradrenaline in rat brain by (Z)- and (E)-3-(4-bromophenyl)-N, N-dimethyl-3-(3-pyridyl) allylamines and theirsecondary analogues. Neuropharmacology16, 57–63 (1977).

    PubMed  Google Scholar 

  • Ross, S. B., Ögren, S.-O., Renyi, A. L. (Z)-Dimethylamino-l-(4-bromophenyl)-l-(3-pyridyl) propene HC1 (H 102/09), a new selective inhibitor ofthe neuronal 5-hydroxytryptamine uptake. Acta Pharmacol. et Toxicol.39, 152–166 (1976).

    Google Scholar 

  • Seeman, P. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev.24, 584–655 (1972).

    Google Scholar 

  • Seppälä, T., Linnoila, M., Elonen, E., Mattila, M. J., Mäki, M. Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving. Clin. Pharmacol. Ther.17, 515–522 (1975).

    PubMed  Google Scholar 

  • Seppälä, T. Psychomotor skills during acute and two-week treatment with mianserin (ORG GB 94) and amitriptyline, and their combined effects with alcohol. Ann. Clin. Res.9, 66–72 (1977).

    PubMed  Google Scholar 

  • Shah, H. C., Lal, H. The potentiation of barbiturates by desipramine in the mouse: mechanism of action. J. Pharmacol. Exp. Ther.179, 404–409 (1971).

    PubMed  Google Scholar 

  • Smith, T. L., Hauser, G. Tricyclic antidepressants and imidazolines as inhibitors ofthe alpha-adrenergic receptor mediatedstimulation of phosphatidylinositol turnover in rat pineal gland. Biochem. Pharmacol.28, 1759–1763 (1979).

    PubMed  Google Scholar 

  • Snyder, S. H., Yamamura, H. I. Antidepressants and the muscarinic acetylcholine receptor. Arch. Gen. Psychiat.34, 236–239 (1977).

    PubMed  Google Scholar 

  • Suchorosky, G. K., Pegrassi, L. The pharmacology of 4H-3-methylcarboxy-amide-1, 3-benzoxazine-2-one (F.I. 6654), a compound acting on the central nervous system. Arzneim.-Forsch.19, 643–648 (1969).

    Google Scholar 

  • U'Prichard, D. C., Greenberg, D. A., Sheehan, P. P., Snyder, S. H. Tricyclic antidepressants: Therapeutic properties and affinity forα-noradrenergic receptor binding site in the brain. Science199, 197–198 (1977).

    Google Scholar 

  • Uzan, A., LeFur, G., Malgouris, C. Are antihistamines sedative via a blockade of brain H1-receptors? J. Pharm. Pharmacol.31, 701–702 (1979).

    PubMed  Google Scholar 

  • Vaillant, G. E. Clinical significance of anticholinergic effects of imipraminelike drugs. Amer. J. Psychiat.125, 1600–1602 (1969).

    PubMed  Google Scholar 

  • Van Zwieten, P. A. Interaction between centrally acting hypotensive drugs and tricyclicantidepressants. Arch. Int. Pharmacodyn.214, 12–30 (1975).

    PubMed  Google Scholar 

  • Van Zwieten, P. A. Interactions interfering with central adrenoreceptor activity and hypotension of centrally acting antihypertensive agents. Progr. Brain Res.47, 385–390 (1977).

    Google Scholar 

  • Vesell, E. S., Passananti, G. T., Green, F. E., Page, J. G. Genetic control of drug levels and of the induction of drug-metabolizing enzymes in man: individual variability in the extent of allopurinol and nortriptyline inhibition of drug metabolism. Ann. N.Y. Acad. Sci.179, 752–773 (1971).

    PubMed  Google Scholar 

  • Vetulani, J., Sulser, F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating systeminlimbic forebrain. Nature257, 495–496 (1975).

    PubMed  Google Scholar 

  • Voith, K., Herr, F. Psychopharmacological evaluation of a new antidepressant: butriptyline. Arch. Int. Pharmacodyn.182, 318–331 (1969).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cott, J.M., Ögren, S.O. Antidepressant drugs and ethanol: Behavioral and pharmacokinetic interactions in mice. J. Neural Transmission 48, 223–240 (1980). https://doi.org/10.1007/BF01250658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250658

Keywords

Navigation