Skip to main content
Log in

Probenecid sensitive pathway of elimination of dopamine and serotonin metabolites in CSF of the rat

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

CSF was removed at a constant flow rate of 1μl/min from the third ventricle of anesthetized rats. Fiveμl CSF samples were directly injected every 15 min into a liquid Chromatographic system coupled with an amperometric detector. Mean CSF values for free dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) were 1.4, 0.9, and 2.6×10−6M respectively. High doses of probenecid resulted in a linear increase of acidic metabolite concentrations which gave an index of the fractional turnover rates related to the resorption by the weak organic acid carrier. Accumulation rates were 0.24, 0.87, and 1.58μmol/l/h for DOPAC, HVA and 5-HIAA respectively. This route of elimination was predominant for 5-HIAA while it represented only a small part of total turnover for DOPAC. A high elimination rate constant for HVA validates the use of control levels of this metabolite as an indication of fractional HVA turnover dependent upon probenecid-sensitive carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenstein, M. L., Korf, J.: Aspects of influx and efflux of homovanillic acid of rat cerebrospinal fluid. Brain Res.149, 129–140 (1978).

    PubMed  Google Scholar 

  • Ashcroft, G. W., Dow, R. C., Moir, A. T. B.: The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanesthetized dog. J. Physiol. (London)199, 397–425 (1968).

    Google Scholar 

  • Barkai, A. I.: Serotonin turnover in the intact rabbit brain: relationship to extracellular proteins and modification by pentobarbital or haloperidol. J. Pharmacol. Exp. Ther.208, 44–48 (1979).

    PubMed  Google Scholar 

  • Cespuglio, C. R., Faradji, H., Riou, F., Buda, M., Gonon, F., Pujol, J. F., Jouvet, M.: Differential pulse voltammetry in brain tissue. II. Detection of 5-hydroxyindolacetic acid in the rat striatum. Brain Res.223, 299–311 (1981).

    PubMed  Google Scholar 

  • Cheifetz, S., Warsh, J. J.: Occurrence and distribution of 5-hydroxytryptophol in the rat. J. Neurochem.34, 1093–1099 (1980).

    PubMed  Google Scholar 

  • Cserr, H. F., Van Dyke, D. H.: 5-hydroxyindoleacetic acid accumulation by isolated choroid plexus. Am. J. Physiol.220, 718–723 (1971).

    PubMed  Google Scholar 

  • Danguir, J., Le Quan-Bui, K. H., Elghozi, J. L., Devynck, M. A., Nicolaidis, S.: LCEC monitoring of 5-hydroxyindolic compounds in the cerebrospinal fluid of the rat related to sleep and feeding. Brain Res. Bull.8, 293–297 (1982).

    PubMed  Google Scholar 

  • Dedek, J., Baumes, R., Tien-Duc, N., Gomeni, R., Korf, J.: Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. J. Neurochem.33, 687–695 (1979).

    PubMed  Google Scholar 

  • Fernström, J. D., Wurtman, R. J.: Brain serotonin content: physiological regulation by plasma neutral amino acids. Science178, 414–416 (1972).

    PubMed  Google Scholar 

  • Forn, J.: Active transport of 5-hydroxyindoleacetic acid by the rabbit choroid plexusin vitro: blockade by probenecid and metabolic inhibitors. Biochem. Pharmacol.21, 619–624 (1972).

    PubMed  Google Scholar 

  • Growdon, J. H., Melamed, E., Logue, M., Hefti, F., Wurtman, R. J.: Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic levels in patients with parkinson's disease. Life Sci.30, 827–832 (1982).

    PubMed  Google Scholar 

  • Knott, P. J., Curzon, G.: Free tryptophan in plasma and brain tryptophan metabolism. Nature239, 452–453 (1972).

    PubMed  Google Scholar 

  • Korf, J., Van Praag, H. M.: Amine metabolism in the human brain: further evaluation of the probenecid test. Brain Res.35, 221–230 (1971).

    PubMed  Google Scholar 

  • Le Quan-Bui, K. H., Elghozi, J. L., Devynck, M. A., Meyer, P.: Rapid liquid Chromatographic determination of 5-hydroxyindoles and dihydroxyphenylacetic acid in cerebrospinal fluid of the rat. European J. Pharmacol.81, 315–320 (1982).

    Google Scholar 

  • Mann, J. D., Butler, A. B., Rosenthal, J. E., Maffeo, C. J., Johnson, R. N., Bass, N. H.: Regulation of intracranial pressure in rat, dog, and man. Ann. Neurol.3, 156–165 (1978).

    PubMed  Google Scholar 

  • Meek, J. L., Neff, N. H.: Acidic and neutral metabolites of norepinephrine: their metabolism and transport from brain. J. Pharmacol. Exp. Ther.181, 457–462 (1972).

    PubMed  Google Scholar 

  • Mignot, E., Laude, D., Elghozi, J. L., Le Quan-Bui, K. H., Meyer, P.: Central administration of yohimbine increases free 3-methoxy-4-hydroxyphenylglycol in the cerebrospinal fluid of the rat. European J. Pharmacol.83, 135–138 (1982).

    Google Scholar 

  • Mignot, E., Laude, D., Elghozi, J. L.: Kinetics of pharmacologically-induced changes in dopamine and serotonin metabolites levels in CSF of the rat. J. Neurochem. (in press).

  • Morot-Gaudry, Y., Hamon, M., Bourgoin, S., Ley, J. P., Glowinsky, J.: Estimation of the rate of 5-HT synthesis in the mouse brain by various methods. Naunyn-Schmiedeberg's Arch. Pharmacol.282, 223–238 (1974).

    Google Scholar 

  • Neff, N. H., Tozer, T. N., Brodie, B. B.: Application of steady state kinetics to studies of the transfer of 5-hydroxyindoleacetic acid from brain to plasma. J. Pharmacol. Exp. Ther.158, 214–218 (1967).

    PubMed  Google Scholar 

  • Nielsen, J. A., Moore, K. E.: Measurement of metabolites of dopamine and 5-hydroxytryptamine in cerebroventricular perfusates of unanesthetized, freely-moving rats: selective effects of drugs. Pharmacol. Biochem. Behav.16, 131–137 (1982).

    PubMed  Google Scholar 

  • Palfreyman, M. G., Huot, S., Wagner, J.: Value of monoamine metabolite determinations in CSF as an index of their concentrations in rat brain following various pharmacological manipulations. J. Pharmacol. Methods8, 183–196 (1982).

    PubMed  Google Scholar 

  • Renaud, B., Mouret, J., Michel, D., Chazot, G., Laurent, B., Quincy, C.: Exploration pharmacologique du métabolisme des monoamines cérébrales par le test au probénécide: intérêt et limites. In: Les Neuromédiateurs du Tronc Cérébral (Schott, B., Chazot, G., eds.), pp. 217–231. Paris: Sandoz. 1980.

    Google Scholar 

  • Sarna, G. S., Hutson, P. H., Tricklebank, M. D., Curzon, G.: Determination of brain 5-hydroxytryptamine turnover in freely moving rats using repeated sampling of cerebrospinal fluid. J. Neurochem.40, 383–388 (1983).

    PubMed  Google Scholar 

  • Van Wijk, M., Sebens, J. B., Korf, J.: Probenecid-induced increase of 5-hydroxytryptamine synthesis in rat brain, as measured by formation of 5-hydroxytryptophan. Psychopharmacol.60, 229–235 (1979).

    Google Scholar 

  • Weiner, I. M.: Transport of weak acids and bases. In: Handbook of Physiology, Section 8: Renal Physiology (Orloff, J., Berliner, R. W., eds.), pp. 521–554. Washington: American Physiological Society. 1973.

    Google Scholar 

  • Westerink, B. H. C., Korf, J.: Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. European J. Pharmacol.37, 249–255 (1976).

    Google Scholar 

  • Westerink, B. H. C., Spaan, S. J.: Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection: implications for the sequence in the cerebral metabolism of dopamine. J. Neurochem.38, 342–347 (1982).

    PubMed  Google Scholar 

  • Wightman, R. M., Strope, E., Plotsky, P., Adams, R. N.:In vivo voltammetry: monitoring of dopamine metabolites in CSF following release by electrical stimulation. Brain Res.159, 55–68 (1978).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elghozi, J.L., Mignot, E. & Le Quan-Bui, K.H. Probenecid sensitive pathway of elimination of dopamine and serotonin metabolites in CSF of the rat. J. Neural Transmission 57, 85–94 (1983). https://doi.org/10.1007/BF01250050

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250050

Key words

Navigation