Skip to main content
Log in

Failure of decreased serotonin uptake or monoamine oxidase inhibition to block the acceleration in brain 5-hydroxyindole synthesis that follows food consumption

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The acceleration in brain serotonin synthesis produced by injecting rats with tryptophan or allowing them to consume a carbohydrate diet was not blocked by the prior elevation of brain serotonin levels (by administration of a MAO inhibitor: Lilly 516411) or by a treatment (chlorimipramine administration) that decreases impulse flow along serotoninergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., J. A. Rosecrans, andM. H. Sheard: Serotonin release in the forebrain by stimulation of midbrain raphe. Science156, 402–403 (1966).

    Google Scholar 

  • Aghajanian, G. K., andB. S. Bunney: Pre-and postsynaptic feedback mechanism in central dopaminergic neurons. In: Frontiers in Neurology and Neuroscience Research 1974 (Seemam, P., andG. M. Brown, eds.), pp. 4–11. Toronto: University of Toronto Press. 1974.

    Google Scholar 

  • Alousi, A., andN. Weiner: The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc. Nat. Acad. Sci. U.S.A.56, 1491–1496 (1966).

    Google Scholar 

  • Andén, N.-E., A. Rubenson, K. Fuxe, andT. Hokfelt: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol.19, 627–629 (1967).

    Google Scholar 

  • Bruinvels, J.: Inhibition of the biosynthesis of 5-hydroxytryptamine in rat brain by imipramine. Eur. J. Pharmacol.20, 231–237 (1972).

    Google Scholar 

  • Bunney, B. S., J. R. Walters, R. H. Roth, andG. K. Aghajanian: Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther.185, 560–571 (1973).

    Google Scholar 

  • Carlsson, A., H. Corrodi, K. Fuxe, andT. Hokfelt: Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. Eur. J. Pharmacol.5, 357–366 (1969).

    Google Scholar 

  • Carlsson, A.: Pharmacological and biochemical aspects of striatal dopamine receptors. In: Frontiers in Neurology and Neuroscience Research 1974 (Seeman, P., andG. M. Brown, eds.), pp. 1–3. Toronto: University of Toronto Press. 1974.

    Google Scholar 

  • Corrodi, H., andK. Fuxe: The effect of imipramine on central monoamine neurons. J. Pharm. Pharmacol.20, 230–233 (1968).

    Google Scholar 

  • Curzon, G., andA. Green: Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of cat brain. Brit. J. Pharmacol.39, 653–655 (1970).

    Google Scholar 

  • Dairman, W., andS. Udenfriend: Increased conversion of tyrosine to catecholamines in the intact rat following elevation of tissue tyrosine hydroxylase levels by administered phenoxybenzamine. Mol. Pharmacol.6, 350–356 (1970 a).

    Google Scholar 

  • Dairman, W., andS. Udenfriend: Effect of ganglionic blocking agents on the increased synthesis of catecholamines resulting fromα-adrenergic blockade or exposure to cold. Biochem. Pharmacol.19, 979–984 (1970 b).

    Google Scholar 

  • Denckla, W. D., andH. K. Dewey: The determination of tryptophan in plasma, liver and urine. J. Lab Clin. Med.69, 160–168 (1967).

    Google Scholar 

  • Eccleston, D., I. M. Ritchie, andM. H. I. Roberts: Long term effect of midbrain stimulation on 5-hydroxyindole synthesis in rat brain. Nature226, (5210), 84–85 (1970).

    Google Scholar 

  • Fernstrom, J. D., andR. J. Wurtman: Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science173, 149–152 (1971 a).

    Google Scholar 

  • Fernstrom, J. D., andR. J. Wurtman: Brain serotonin content: Increase following ingestion of carbohydrate diet. Science174, 1023–1025 (1971 b).

    Google Scholar 

  • Fuller, R. W.: Kinetic studies and effectsin vivo of a new monoamine oxidase inhibitor, N-[2-(O-Chlorphenoxy)-Ethyl]-cyclopropylamine. Biochem. Pharmacol.17, 2097–2106 (1968).

    Google Scholar 

  • Gordon, R., S. Spector, A. Sjoerdsma, andS. Udenfriend: Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol. Exp. Ther.153, 440–447 (1966).

    Google Scholar 

  • Grahame-Smith, D. G., andA. G. Parfitt: Tryptophan transport across the synaptosomal membrane. J. Neurochem.17, 1339–1353 (1970).

    Google Scholar 

  • Green, H., S. M. Greenberg, R. W. Erickson, J. L. Sawyer, andT. Ellison: Effect of dietary phenylalanine and tryptophan upon rat brain amine levels. J. Pharmacol. Exp. Ther.136, 174–178 (1962).

    Google Scholar 

  • Hamon, M., S. Bourgoin, andJ. Glowinski: Feedback regulation of 5-HT synthesis in rat striatal slices. J. Neurochem.20, 1727–1745 (1973).

    Google Scholar 

  • Jequier, E., O. S. Robinson, W. Lovenberg, andA. Sjoerdsma: Further studies on tryptophan hydroxylase in rat brain stem and beef pineal. Biochem. Pharmacol.18, 1071–1081 (1969).

    Google Scholar 

  • Karobath, M.: Serotonin synthesis with rat brain synaptosomes. Effects of serotonin and monoamine oxidase inhibitors. Biochem. Pharmacol,21, 1253–1263 (1972).

    Google Scholar 

  • Lin, R. C., N. H. Neff, S. H. Ngai, andE. Costa: Turnover rates of serotonin and norepinephrine in brains of normal and pargyline treated rats. Life Sci.8, 1077–1084 (1969).

    Google Scholar 

  • Macon, J. B., L. Sokoloff, andJ. Glowinski: Feedback control of rat brain 5-hydroxytryptamine synthesis. J. Neurochem.18, 323–331 (1971).

    Google Scholar 

  • Meek, J. L., K. Fuxe, andN.-E. Andén: Effects of antidepressant drugs of the imipramine type on central 5-hydroxytryptamine neurotransmission. Eur. J. Pharmacol.9, 325–332 (1970).

    Google Scholar 

  • Meek, J. L., andB. Werdinius: Serotonin turnover decreased by the antidepressant drugchlorimipramine. J.Pharm. Pharmacol.22, 141–145 (1970).

    Google Scholar 

  • Meek, J. L., andK. Fuxe: Serotonin accumulation after monoamine oxidase inhibition. Effects of decreased flow and of some antidepressants and hallucinogens. Biochem. Pharmacol.20, 653–706 (1971).

    Google Scholar 

  • Millard, S. A., andE. M. Gal: The contribution of 5-hydroxyindole-pyruvic acid to cerebral 5-hydroxyindole metabolism. Int. J. Neurosci.1, 211–218 (1971).

    Google Scholar 

  • Modigh, K.: Effect of chlorimipramine on the rate of tryptophan hydroxylase in the intact and transected spinal cord. J. Pharm. Pharmacol.25, 926–928 (1973).

    Google Scholar 

  • Moir, A. T. B., andD. Eccleston: The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J. Neurochem.15, 1093 to 1108 (1968).

    Google Scholar 

  • Mueller, R. A., H. Thoenen, andJ. Axelrod: Adrenal tyrosine hydroxylase: Compensatory increase in activity after chemical sympathectomy. Science163, 468–469 (1969).

    Google Scholar 

  • Persson, T.: Drug induced changes in3H-catecholamine accumulation after3H-tyrosine. Acta Pharmacol. Toxicol.28, 378–390 (1970).

    Google Scholar 

  • Sedvall, G. C., andJ. Kopin: Acceleration of norepinephrine synthesis in the rat submaxillary glandin vivo during sympathetic nerve stimulation. Life Sci.6, 45–51 (1967).

    Google Scholar 

  • Sheard, M. H., A. Zolovick, andG. K. Aghajanian: Raphe neurons: effect of tricyclic antidepressant drugs. Brain Res.43, 690–694 (1972).

    Google Scholar 

  • Spector, S., R. Gordon, A. Sjoerdsma, andS. Udenfriend: End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Mol. Pharmacol.3, 549–555 (1967).

    Google Scholar 

  • Weiner, N., andM. Rabadjija: The effect of nerve stimulation on the synthesis and metabolism of norepinephrine in the isolated guinea-pig hypogastric nerve vas deferens preparation. J. Pharmacol. Exp. Ther.160, 61–71 (1968).

    Google Scholar 

  • Wurtman, R. J., andJ. D. Fernstrom: L-tryptophan, L-tyrosine and the control of brain monoamine biosynthesis. In: Perspectives in Neuro-pharmacology (Snyder, S.H., ed.), pp. 143–192. New York: Oxford University Press. 1972.

    Google Scholar 

  • Wurtman, R. J., F. Larin, S. Mostafapour, andJ. D. Fernstrom: Brain catechol synthesis: Control by brain tyrosine concentration. Science185, 183–185 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, J.H., Colmenares, J.L. & Wurtman, R.J. Failure of decreased serotonin uptake or monoamine oxidase inhibition to block the acceleration in brain 5-hydroxyindole synthesis that follows food consumption. J. Neural Transmission 37, 25–32 (1975). https://doi.org/10.1007/BF01249763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249763

Keywords

Navigation