Skip to main content
Log in

Co-localization of the β-subtype of protein kinase C and phosphorylation-dependent immunoreactivity of neurofilaments in intact, decentralized and axotomized rat peripheral neurons

  • Published:
Journal of Neurocytology

Summary

The localizations of protein kinase C-β-immunoreactivity and phosphorylation-dependent immunoreactivity of neurofilaments were compared in rat dorsal root, hypogastric, and superior cervical ganglia. In all the ganglia studied, protein kinase C-β and phosphorylation-dependent immunoreactivity of neurofilaments were co-localized in nerve fibres, and no fibres with only protein kinase C-β-immunoreactivity or phosphorylation-dependent immunoreactivity of neurofilaments were observed. Most intense perikaryal protein kinase c-β and phosphorylation-dependent neurofilament-staining were seen in large dorsal root ganglion neurons, whereas in the superior cervical ganglion only very faint protein-kinase C-β and no phosphorylation-dependent staining was seen in the neuronal cell bodies. Both decentralization and axotomy of the superior cervical ganglion induced an accumulation of protein-kinase C-β-immunoreactivity and phosphorylation-dependent immunoreactivity of neurofilaments in the majority of neuronal perikarya. The accumulation was first observed at 1–2 days postoperation and it persisted up to 6–10 days postoperation. In strongly labelled decentralized neuronal perikarya, precipitation of immunoreactivity was seen near the cell and nuclear membranes, whereas in axotomized neurons, immunoreactivity was often concentrated as a unipolar clump in the cytoplasm. The results show that protein kinase C-β-immunoreactivity and phosphorylation-dependent immunoreactivity of neurofilaments are colocalized in intact rat peripheral ganglia and that both accumulate transiently in cell bodies of the superior cervical ganglion after decentralization and axotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, R. M. &Burns, D. J. (1991) Lipid activation of protein kinase C.Journal of Biological Chemistry 266, 4661–4.

    Google Scholar 

  • Black, M. M. &Lee, V. M-Y. (1988) Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons.Journal of Neuroscience 8, 3296–305.

    Google Scholar 

  • Carden, M. J., Trojanowski, J. W., Schlaepfer, W. W. &Lee, V. M-Y. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns.Journal of Neuroscience 7, 3489–504.

    Google Scholar 

  • Clark, E. A. &Lee, V. M-Y. (1991) The differential role of protein kinase C isozymes in the rapid induction of neurofilament phosphorylation by nerve growth factor and phorbol ester in PC12 cells.Journal of Neurochemistry 56, 802–10.

    Google Scholar 

  • Dräger, U. C. &Hofbauer, A. (1984) Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in the retina.Nature 309, 624–6.

    Google Scholar 

  • Fields, A. P., Pettit, G. R. &May, W. S. (1988) Phophorylation of lamin B at the nuclear membrane by activated protein kinase C.Journal of Biochemistry 263, 8253–60.

    Google Scholar 

  • Georges, E., Lindenbaum, M. H., Sacher, M. G., Trifaro, F. -M. &Mushynski, W. E. (1989) Neurofilament phosphorylation in cultured bovine adrenal chromaffin cells is stimulated by phorbol ester.Journal of Neurochemistry 53, 1156–61.

    Google Scholar 

  • Goldstein, M. E., Cooper, H. S., Bruce, J., Carden, M. J., Lee, V. M-Y. &Schlaepfer, W. W. (1987) Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve.Journal of Neuroscience 7, 1586–94.

    Google Scholar 

  • Gonda, Y., Nishizawa, K., Ando, S., Kitamura, S., Minoura, Y., Nishi, Y. &Inagaki, M. (1990) Involvement of protein kinase C in the regulation of assembly-disassembly of neurofilamentsin vitro.Biochemical and Biophysical Research Communications 167, 1316–25.

    Google Scholar 

  • Grant, N. G. &Aunis, D. (1990) Effects of phorbol esters on cytoskeletal proteins in cultured bovine chromaffin cells: induction of neurofilament phosphorylation and reorganization of actin.European Journal of Cell Biology 52, 36–46.

    Google Scholar 

  • Hocenwar, B. A. &Lane, D. (1988) Selective translocation of β protein kinase C to the nucleus of human promyelocytic (HL 60) leukemia cells.Journal of Biological Chemistry 266, 28–33.

    Google Scholar 

  • Hoffman, P. N., Griffin, J. W., Gold, B. G. &Price, D. L. (1985) Slowing of neurofilament transport and the radial growth of developing nerve fibers.Journal of Neuroscience 5, 2920–9.

    Google Scholar 

  • Hoffman, P. N., Cleveland, D. W., Griffin, F. W., Laroe, P. W., Cowan, N. G. &Price, D. L. (1987) Neurofilament gene expression: A major determinant of axonal caliber.Proceedings of The National Academy of Sciences (USA) 84, 3472–6.

    Google Scholar 

  • Huang, K. -P. (1989) The mechanism of protein kinase C activation.Trends in Neurosciences 12, 425–32.

    Google Scholar 

  • Hubbard, B. D. &Lazarides, E. (1979) Copurification of actin and desmin from chicken smooth muscle and their copolymerizationin vitro to intermediate filaments.Journal of Cell Biology 80, 166–82.

    Google Scholar 

  • Jones, S. M. &Williams, R. C. (1982) Phosphate content of mammalin neurofilament polypeptides.Journal of Biological Chemistry 257, 9902–5.

    Google Scholar 

  • Julien, J. -P. &Mushynski, W. E. (1983) The distribution of phosphorylation sites in mammalian neurofilament polypeptides.Journal of Biological Chemistry 258, 4019–25.

    Google Scholar 

  • Julien, J. -P., Smolik, G. D. &Mushynski, W. E. (1983) Characteristics of the protein kinase activity associated with rat neurofilament preparations.Biochimica et Biophysica Acta 755, 25–31.

    Google Scholar 

  • Klosen, P., Anderton, B. H., Brion, J. -P. &Van Den Bosch De Aguilar, P. (1990) Perikaryal neurofilament phophorylation in axotomized and 6-OH-dopamine lesioned CNS neurons.Brain Research 526, 259–69.

    Google Scholar 

  • Koliatsos, V. E., Applegate, M. D., Kitt, C. A., Walker, L. C., Delong, M. R. &Price, D. L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fimbria-fornix.Brain Research 482, 205–18.

    Google Scholar 

  • Ksiezak-Reding, H., Dickson, D. W., Davies, P. &Yen, S. -H. (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles.Proceedings of the National Academy of Sciences (USA) 84, 3410–14.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    Google Scholar 

  • Lawson, S. N., Haber, A. A., Harper, E. L., Garson, J. A. &Anderton, B. H. (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurons.Journal of Comparative Neurology 228, 263–72.

    Google Scholar 

  • Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W. &Trojanowski, J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.Journal of Neuroscience 7, 3474–88.

    Google Scholar 

  • Letterier, J. -F., Liem, R. K. &Shelanski, M. L. (1981) Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent microtubule-associated protein kinase.Journal of Cell Biology 90, 755–60.

    Google Scholar 

  • Lieberman, A. R. (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury.International Review of Neurobiology 14, 49–124.

    Google Scholar 

  • Liem, R. K., Yen, S. -H., Solomon, G. E. &Shelankis, M. L. (1978) Intermediate filaments in nervous tissues.Journal of Cell Biology 79, 637–45.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurement with the Folin phenol reagent.Journal of Biological Chemistry 193, 265–75.

    Google Scholar 

  • Mochly-Rosen, D., Heinrich, C. J., Cheever, L., Khaner, H. &Simpson, P. C. (1990) A protein kinase C isozyme is translocated to cytoskeletal elements on activation.Cell Regulation 1, 693–706.

    Google Scholar 

  • Molenaar, W. M., Lee, V. M.-Y. &Trojanowski, J. Q. (1990) Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synapthophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins.Experimental Neurology 108, 1–9.

    Google Scholar 

  • Moss, T. H. &Lewkowicz, S. J. (1983) The axon reaction in motor and sensory neurones of mice studied by a monoclonal antibody marker of neurofilament protein.Journal of the Neurological Sciences 60, 267–80.

    Google Scholar 

  • Muma, N. A., Hoffman, P. N., Slunt, H. H., Applegate, M. D., Lieberburg, I. &Price, D. L. (1990) Alteration in levels of mRNAs coding for neurofilament protein subunits during regeneration.Experimental Neurology 107, 230–5.

    Google Scholar 

  • Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implication for cellular regulation.Nature 334, 661–5.

    Google Scholar 

  • Nixon, R. A., Lewis, S. E. &Marotta, H. (1987) Postranslational modification of neurofilament protein by phosphate during axoplasmic transport in retinal ganglion cell neurons.Journal of Neuroscience Research 7, 1145–58.

    Google Scholar 

  • Nukina, N., Kosik, K. S. &Selkoe, D. J. (1987) Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to cross-reaction with tau protein.Proceedings of the National Academy of Sciences (USA) 84, 3415–19.

    Google Scholar 

  • Perry, M. J., Lawson, S. N. &Robertson, J. (1991) Neurofilament immunoreactivity in a population of rat primary afferent neurons: a quantitative study of phosphorylated and non-phosphorylated subunits.Journal of Neurocytology 20, 746–58.

    Google Scholar 

  • Roder, H. M. &Ingram, V. M. (1991) Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.Journal of Neuroscience 11, 3325–43.

    Google Scholar 

  • Roivainen, R., Koistinaho, J. &Hervonen, A. (1990) Localization of protein kinase C-β-like immunoreactivity in the rat dorsal root ganglion.Neuroscience Research 7, 381–4.

    Google Scholar 

  • Roivainen, R., Iadarola, M. J., Hervonen, A. &Koistinaho, J. (1991) Protein kinase C-β-like immunoreactivity in rat sympathetic neurons.Histochemistry 95, 247–53.

    Google Scholar 

  • Roivainen, R. (1991) Increase in protein kinase C-β-like immunoreactivity (PKC-β-LI) in the rat superior cervical ganglion after decentralization.Neuroscience Research 11, 292–6.

    Google Scholar 

  • Roth, B. L., Iadarola, M. J., Mehegan, J. P. &Jacobowitz, D. M. (1989) Rat brain protein kinase C: purification, antibody production and quantification in discrete regions of hippocampus.Journal of Neurochemistry 52, 215–21.

    Google Scholar 

  • Sato, Y., Kim, S. U. &Ghetti, B. (1985) Induction of neurofibrillary tangles in cultured mouse neurons by maytanprine.Journal of Neurological Sciences 68, 191–203.

    Google Scholar 

  • Schlaepfer, W. W. &Freeman, A. (1978) Neurofilament protein of rat peripheral nerve and spinal cord.Journal of Cell Biology 78, 653–62.

    Google Scholar 

  • Shaw, G., Winialski, D. &Teier, P. (1988) The effect of axotomy and deafferentation on phosphorylation-dependent antigeneicity of neurofilaments in rat superior cervical ganglion neurons.Brain Research 460, 227–34.

    Google Scholar 

  • Shoji, M., Girard, P. R., Gonzalo, J. M., Vogler, W. R. &Kuo, J. R. (1986) Immunocytochemical evidence for phorbol ester-induced protein kinase C translocation in HL 60 cells.Biochemical and Biophysical Research Communications 135, 1144–9.

    Google Scholar 

  • Sihag, R. K. &Nixon, R. A. (1990) Phosphorylation of the amino-terminal head domain of the middle molecular mass 145-kD subunit of neurofilaments.Journal of Biological Chemistry 265, 4166–71.

    Google Scholar 

  • Sihag, R. K., Jeng, Y. &Nixon, R. A. (1988) Phosphorylation of neurofilament protein by protein kinase C.FEBS Letters 23, 181–5.

    Google Scholar 

  • Sternberger, L. A. &Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilamentsin situ.Proceedings of the National Academy of Sciences (USA) 80, 6126–30.

    Google Scholar 

  • Szaro, B. G., Whitnall, M. H. &Gainer, H. (1990) Phosphorylation-dependent epitopes on neurofilament proteins and neurofilament densities differ in axons in the corticopinal and primary sensory dorsal column tracts in the rat spinal cord.Journal of Comparative Neurology 302, 220–35.

    Google Scholar 

  • Toru-Delbauffe, D., Hosty, P. M., Chantoux, F. &Francon, J. (1986) Properties of neurofilament protein kinase.Biochemical Journal 235, 419–23.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Troy, C. M., Muma, N. A., Greene, E. A., Price, D. L. &Shelanski, M. L. (1990) Regulation of peripherin and neurofilament expression in regenerating rat motor neurons.Brain Research 529, 232–8.

    Google Scholar 

  • Vallano, M. L., Buckholz, T. M. &De Lorenzo, R. J. (1985) Phosphorylation of neurofilament protein by endogenous calcium/calmodulin-dependent protein kinase.Biochemical and Biophysical Research Communications 130, 957–63.

    Google Scholar 

  • Watson, D. F., Griffin, J. W., Fittro, K. P. &Hoffman, P. N. (1989) Phosphorylation-dependent immunoreactivity of neurofilaments increase during axonal maturation and β, β′-iminodipropionidile intoxication.Journal of Neurochemistry 53, 1818–29.

    Google Scholar 

  • Wood, J. N., Lathangue, N. B., McLachlan, E. R., Smith, B. J., Anderton, B. H. &Dowding, A. J. (1985) Chromatin proteins share antigenic determinants with neurofilaments.Journal of Neurochemistry 52, 1700–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roivainen, R., Nikkari, S.T., Iadarola, M.J. et al. Co-localization of the β-subtype of protein kinase C and phosphorylation-dependent immunoreactivity of neurofilaments in intact, decentralized and axotomized rat peripheral neurons. J Neurocytol 22, 154–163 (1993). https://doi.org/10.1007/BF01246354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01246354

Keywords

Navigation