Skip to main content
Log in

Inhibitory effect of diazepam on the activity of the hypothalamic-pituitary-adrenal axis in female rats

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The acute intraperitoneal administration of anxiolytic diazepam (2 mg/kg) inhibits the activity of the hypothalamic-pituitary-adrenal (HPA) axis, i.e., it decreases the concentration of adrenocorticotropic hormone (ACTH) and corticosterone in female rats. This fall of ACTH and corticosterone levels was reversed by an antagonist of central benzodiazepine receptors — flumazenil. The antagonist of peripheral benzodiazepine receptors — PK 11195, failed to affect diazepam-induced decrement of plasma ACTH and corticosterone levels. The suppressed HPA function obtained after diazepam administration was also antagonized by bicuculline, an antagonist of GABA recognition sites, and by picrotoxin, a drug that blocks the GABA-A receptor associated chloride channel. These results suggest that central benzodiazepine receptors, the part of GABA-A macromolecular complex, are involved in diazepam-induced inhibition of the activity of the HPA axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosi P, Ricci S, Quartesan R, Morreti P, Pelicci G, Pagliacci C, Nicoletti I (1986) Effects of acute benzodiazepine administration on growth hormone, prolactin and cortisol release after moderate insulin-induced hypoglycemia in normal women. Psychopharmacology 88: 187–189

    Google Scholar 

  • Anderson RA, Mitchell R (1984) Central-type benzodiazepine binding sites in rat pituitary gland are of BZ-1 subtype. Neuropharmacology 23: 1331–1334

    Google Scholar 

  • Barlow SM, Knight AF, Sullivan FM (1979) Plasma corticosterone responses to stress following chronic oral administration of diazepam in the rat. J Pharm Pharmacol 31: 23–26

    Google Scholar 

  • Bizzi A, Ricci MR, Veneroni E, Amato M, Garattini S (1984) Benzodiazepine receptor antagonists reverse the effect of diazepam on the plasma corticosterone in stressed rats. J Pharm Pharmacol 36: 134–135

    Google Scholar 

  • Blasquez C, Jegou S, Tranchard Bunel D, Delbende C, Braquet P, Vaudry H (1991) Central-type benzodiazepines inhibit release of alpha-melanocyte-stimulating hormone from the rat hypothalamus. Neuroscience 42: 509–516

    Google Scholar 

  • Bruni G, Dal-Pra P, Dotti MT, Segre G (1980) Plasma ACTH and cortisol levels in benzodiazepine treated rats. Pharmacol Res Commun 12: 163–175

    Google Scholar 

  • Buckingham JC, Hodges JR (1979) Hypothalamic receptors influencing the secretion of corticotrophin releasing hormone in the rat. J Physiol 290: 421–431

    Google Scholar 

  • Calogero AE, Gallucci WT, Chrousos GP, Gold PW (1988) Interaction between GABAergic neurotransmission and rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Res 463: 28–36

    Google Scholar 

  • Calogero AE, Kamilaris TC, Bernardini R, Johnson EO, Chrousos GP, Gold PW (1990) Effects of peripheral benzodiazepine receptor ligands on hypothalamic-pituitary-adrenal function in the rat. J Pharmacol Exp Ther 253: 729–737

    Google Scholar 

  • Calogero AE, Gallucci WT, Tomai TP, Loriaux DL, Chrousos GP, Gold PW (1991) Inhibition of corticotropin releasing hormone secretion by GABA-A and GABA-B receptor action in vitro: clinical implications. In: Recent advances in adrenal regulation and function. Serono symposia publications, vol 40. Raven Press, New York, pp 279–284

    Google Scholar 

  • Christensen P, Lolk A, Gram LF, Kragh-Sorensen P (1992) Benzodiazepine-induced sedation and cortisol suppression. A placebo-controlled comparison of oxazepam and nitrazepam in healthy male volunteers. Psychopharmacology 106: 511–516

    Google Scholar 

  • Daniels WMU, Jaffer A, Engelbrecht AH, Russel VA, Taljaard JJF (1990) The effect of intrahippocampal injection of kanaic acid on corticosterone release in rats. Neurochem Res 15: 495–499

    Google Scholar 

  • De Boer SF, Van Der Gugten J, Slangen JL (1990) Brain benzodiazepine receptor-mediated effects on plasma catecholamine and corticosterone concentrations in rats. Brain Res Bull 24: 843–847

    Google Scholar 

  • De Boer SF, Katz JL, Valentino RJ (1992) Common mechanisms underlying the proconflict effects of corticotropin-releasing factor, a benzodiazepine inverse agonist and electric foot-shock. J Pharmacol Exp Ther 262: 335–342

    Google Scholar 

  • De Souza EB (1990) Neuroendocrine effects of benzodiazepines. J Psychiatr Res 24: 111–119

    Google Scholar 

  • De Souza EB, Anholt RRH, Murphy KMM, Snyder SH, Kuhar MJ (1985) Peripheral-type benzodiazepine receptors in endocrine organs: autoradiographic localization in rat pituitary, adrenal, and testis. Endocrinology 116: 567–573

    Google Scholar 

  • File SE, Pellow S (1986) Intrinsic actions of the benzodiazepine receptor antagonist Ro 15-1788. Psychopharmacology 88: 1–11

    Google Scholar 

  • Gram LF, Christensen L, Kristensen CB, Kragh-Sorensen P (1984) Suppression of plasma cortisol after oral administration of oxazepam in man. Br J Clin Pharmacol 17: 176–178

    Google Scholar 

  • Grandison L, Guidotti A (1979) Gamma-aminobutyric acid receptor function in rat anterior pituitary: evidence for control of prolactin release. Endocrinology 105: 754–759

    Google Scholar 

  • Haefely WE (1990) The GABA-A-benzodiazepine receptors: biology and pharmacology. In: Burrows GD, Roth M, Noyes R Jr (eds) Handbook of anxiety, vol 3. The neurobiology of anxiety. Elsevier Science Publishers BV, Amsterdam, pp 165–188

    Google Scholar 

  • Hillhouse EW, Milton NGN (1989) Effect of noradrenaline and gamma-aminobutyric acid on the secretion of corticotrophin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. J Endocrinol 122: 719–723

    Google Scholar 

  • Hunkeler W, Mohler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290: 514–516

    Google Scholar 

  • Ixart G, Cryssogellou H, Szafarczyk A, Malaval F, Assenmacher I (1983) Acute and delayed effects of picrotoxin on the adrenocorticotropic system of rats. Neurosci Lett 43: 235–240

    Google Scholar 

  • Jones MT, Hillhouse EW, Burden J (1976) Effect of various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro — a model of the neurotransmitters involved. J Endocrinol 69: 1–10

    Google Scholar 

  • Kalogeras KT, Calogero AE, Kuribayiashi T, Khan I, Gallucci WT, Kling MA, Chrousos GP, Gold PW (1990) In vitro and in vivo effects of triazolobenzodiazepine alprazolam on hypothalamic-pituitary-adrenal function: pharmacological and clinical implications. J Clin Endocrinol Metab 70: 1462–1471

    Google Scholar 

  • Kameyama T, Nebeshima T, Banno S, Kamata K (1983) The relationship between brain gamma-aminobutyric acid and plasma corticosterone levels in mice exposed to high ambient temperature or dexamethasone. Res Commun Psych Psychiatr Behav 8: 11–21

    Google Scholar 

  • Lakić, N, Peričić D, Manev H (1986) Mechanisms by which picrotoxin and a high dose of diazepam elevate plasma corticosterone level. Neuroendocrinology 43: 331–335

    Google Scholar 

  • Le Fur G, Guilloux F, Rufat P, Benavides J, Uzan A, Renault C, Dubroeucq MC, Gueremy C (1983) Peripheral benzodiazepine binding sites: effects of PK 11195, 1-(2-chlorophenyl)-N-methyl-(l-methylpropyl)-3 isoquinolonecarboxamide. II. In vivo studies. Life Sci 32: 1849–1856

    Google Scholar 

  • Lopez AL, Kathol RG, Noyes R Jr (1990) Reduction in urinary free cortisol during benzodiazepine treatment of panic disorder. Psychoneuroendocrinology 15: 23–28

    Google Scholar 

  • Makara GB, Stark E (1974) Effect of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology 16: 178–190

    Google Scholar 

  • Marc V, Morselli PL (1969) Effect of diazepam on plasma corticosterone levels in the rat. J Pharm Pharmacol 21: 784–786

    Google Scholar 

  • Matheson GK, Gage D, White G, Dixon V, Gibson D (1988) A comparison of the effects of buspirone and diazepam on plasma corticosterone levels in rat. Neuropharmacology 27: 823–830

    Google Scholar 

  • Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Rev 14: 203–225

    Google Scholar 

  • Meister B, Hokfelt T, Geffard M, Oertel W (1988) Glutamic acid decarboxylase and gamma-aminobutyric acid-like immunoreactivities in corticotropin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 48: 516–526

    Google Scholar 

  • Miguez MI, Aldegunde M (1987) GABA does not alter the basal secretion of ACTH from adenopituitaries incubated in vitro. Med Sci Res 15: 773–774

    Google Scholar 

  • Miguez I, Aldegunde MA (1990) Effect of gamma-aminobutyric acid on corticosterone secretion: involvement of the noradrenergic system. Life Sci 46: 875–880

    Google Scholar 

  • Miguez I, Atienza G, Aldegunde M (1990) Inhibitory effect of intraventricular administration of GABA on corticosterone release in conscious non-stressed rats. Neuroendocrinol Lett 10: 45–50

    Google Scholar 

  • Moncloa F, Peron FG, Dorfman RI (1959) The fluorimetric determination of corticosterone in rat adrenal tissue and plasma: effect of administering ACTH subcutaneously. Endocrinology 65: 717–724

    Google Scholar 

  • Mukhin AG, Papadopoulos V, Costa E, Krueger KE (1989) Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. Proc Natl Acad Sci USA 86: 9813–9816

    Google Scholar 

  • Nemeroff CB (1992) New vistas in neuropeptide research in neuropsychiatry: focus on corticotropin-releasing factor. Neuropsychopharmacology 6: 69–75

    Google Scholar 

  • Olsen RW (1982) Drug interaction at the GABA receptors ionophore complex. Ann Rev Pharmacol Toxicol 22: 245–277

    Google Scholar 

  • Papadopoulos V, Nowzari FB, Krueger KE (1991) Hormone-stimulated steroidogenesis is coupled to mitochondrial benzodiazepine receptors. J Biol Chem 266: 3682–3687

    Google Scholar 

  • Pellow S, File SE (1985) The effects of putative anxiogenic compounds (FG 7142, CGS 8216 and Ro 15-1788) on the rat corticosterone response. Physiol Behav 35: 587–590

    Google Scholar 

  • Peričić D, Manev H (1990) Dual species dependent effect of dihydroergosine on the convulsions induced by GABA antagonists. J Neural Transm 79: 125–129

    Google Scholar 

  • Peričić D, Lakić N, Manev H (1984) Effect of diazepam on plasma corticosterone levels. Psychopharmacology 83: 79–81

    Google Scholar 

  • Peričić D, Manev H, Lakić N (1985) Sex differences in the response of rats to drugs affecting GABAergic transmission. Life Sci 36: 541–547

    Google Scholar 

  • Petraglia F, Bakalakis S, Facchinetti F, Volpe A, Muller EE, Genazzani AR (1986) Effects of sodium valproate and diazepam on beta-endorphin, beta-lipotropin and cortisol secretion induced by hypoglycemic stress in humans. Neuroendocrinology 44: 320–325

    Google Scholar 

  • Plotsky PM, Otto S, Sutton S (1987) Neurotransmitter modulation of corticotropin releasing factor secretion in the hypophysial-portal circulation. Life Sci 41: 1311–1317

    Google Scholar 

  • Pohorecky LA, Cotler S, Carbone JJ, Roberts P (1988) Factors modifying the effect of diazepam on plasma corticosterone levels in rats. Life Sci 43: 2159–2167

    Google Scholar 

  • Schuckit MA, Hauger R, Klein JF (1992) Adrenocorticotropin hormone response to diazepam in healthy young men. Biol Psychiatry 31: 661–669

    Google Scholar 

  • Silber RH, Busch RD, Oslapas R (1958) Practical procedure for estimation of corticosterone and hydrocortisone. Clin Chem 4: 278–285

    Google Scholar 

  • Verma A, Snyder SH (1989) Peripheral type benzodiazepine receptors. Ann Rev Pharmacol Toxicol 29: 307–322

    Google Scholar 

  • Vincent SR, Hokfelt T, Wu JY (1982) GABA neuron system in hypothalamus and the pituitary gland. Neuroendocrinology 34: 117–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivac, N., Peričić, D. Inhibitory effect of diazepam on the activity of the hypothalamic-pituitary-adrenal axis in female rats. J. Neural Transmission 92, 173–186 (1993). https://doi.org/10.1007/BF01244876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244876

Keywords

Navigation