Skip to main content
Log in

Correcting measurement errors using reference materials in method validation

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Quality assurance and method validation are needed to reduce false decisions due to measurement errors. In this context accuracy and standard uncertainty for the analytical method need to be considered to ensure that the performance characteristics of the method are understood. Therefore, analytical methods ought to be validated before implementation and controlled on a regular basis during usage. For this purpose reference materials (RMs) are useful to determine the performance characteristics of methods under development. These performance parameters may be documented in the light of a method evaluation study and the documentation related to international standards and guidelines. In a method evaluation study of Pb in blood using reference samples from the Laboratoire Toxicologie du Quèbec, Canada, a difference between the systematic errors was observed using a Perkin-Elmer Model 5100 atomic absorption spectrometer and a Perkin-Elmer Model 4100 atomic absorption spectrometer, both with Zeeman background correction. For measurement of blood samples, the performance parameters obtained in the method evaluation studies, i.e. slopes and intercepts of the method evaluation function (MEF), were intended to be used for correcting the systematic errors. However, the number of MEF samples was insufficient to produce an acceptable SD for the MEF slopes to be used for correction. In a method evaluation study on valproate in plasma using the SYVA's EMIT assay on COBAS MIRA S a significant systematic error above the concentration 300 mmol dm−3 was demonstrated (slope 0.9541) and consequently the slope was used for correction of results. For analytes, where certified RMs (CRMs) exist, a systematic error of measurements can be reduced by correcting errors by assessment of the trueness as recommended in international guidelines issued by ISO or the National Institute of Standards and Technology (NIST). When possible, the analysis of several RMs, covering the concentration range of interest, is the most useful way to investigate measurement bias. Unfortunately, until recently only few RMs existed and only few had been produced and certified by specialized organizations such as NIST or the Standards, Measurements and Testing (SMT, previously BCR) programme. Due to the lack of such RMs, network organizations are nowadays established with the aim of supporting the correct use and production of high-quality CRMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Flegal, D. R. Smith,Environ. Res. 1992,58, 125.

    Google Scholar 

  2. D. Becker, R. Christensen, L. Currie, B. Diamondstone, K. Eberhardt, T. Gills, H. Hertz, G. Klouda, J. Moody, R. Parris, R. Schaffer, E. Steel, J. Taylor, R. Watters, R. Zeisler,NIST Special Publication 829, National Institute of Standards and Technology, 1992.

  3. WELAC/EURACHEM,Accreditation for Chemical Laboratories: Guidance on Interpretation of the EN 45000 Series of Standards and ISO/IEC Guide 25, Guidance document WGD2/No. 1, 1993.

  4. ISO/REMCON 319,Traceability and Calibration in Analytical Chemistry and Material Testing: Principles and Applications to Real Life, in Connection with ISO 9000, EN 45000 and ISO Guide 25, June 1994.

  5. L. Aarons, S. Toon, M. Rowland,J. Pharm. Meth. 1987,17, 337.

    Google Scholar 

  6. J. M. Christensen, O. M. Poulsen, T. Anglov,J. Anal. At. Spectrom. 1992,7, 329.

    Google Scholar 

  7. J. M. Christensen, O. M. Poulsen, T. Anglov, in:Handbook on Metals in Clinical and Analytical Chemistry, 1st Ed. (H. G. Seiler, A. Sigel, H. Sigel, eds.) Marcel Dekker, New York, 1994, p. 45.

    Google Scholar 

  8. ISO 8402,Quality Management and Quality Assurance Vocabulary, Geneva, ISO 1994.

  9. ISO,Guide to the Expression of Uncertainty in Measurement, 1st Ed., International Organization for Standardization (ISO), International Electrotechnical Commission (IEC), International Organization of Legal Metrology (OIML), International Bureau of Weights and Measures (BIPM), 1993.

  10. R. Cornelis,Mikrochim. Acta 1991,III, 37.

    Google Scholar 

  11. WELAC,The Expression of Uncertainty in Testing, Draft Document WG 5, 1994.

  12. EURACHEM,Quantifying Uncertainty in Analytical Measurements, Draft Version 5, Eurachem, September 1994.

  13. EN 45001,General Criteria for the Operation of Testing Laboratories, Bruxelles, CEN, 1991.

    Google Scholar 

  14. WECC Doc. 19-1990,Guidelines for the Expression of the Uncertainty of Measurement in Calibrations, Western European Calibration Cooperation (WECC), 1990.

  15. W. Horwitz,Pure Appl. Chem. 1990,62, 1193.

    Google Scholar 

  16. W. Horwitz,Pure Appl. Chem. 1988,60, 855.

    Google Scholar 

  17. Å. M. Hansen, I. L. B. Olsen, E. Holst, O. M. Poulsen,Ann. Occup. Hyg. 1991,35, 603.

    Google Scholar 

  18. A. J. L. Mürer, A. Abildtrup, O. M. Poulsen, J. M. Christensen,Talanta 1992,39, 469.

    Google Scholar 

  19. I. B. O. Olsen, E. Holst,Analyst 1992,117, 707.

    Google Scholar 

  20. A. J. L. Mürer, J. M. Christensen, T. Midtgaard,Int. Arch. Occup. Environ. Health 1994,65, 313.

    Google Scholar 

  21. ISO/REMCO N 263,Calibration of Chemical Analyses and Use of Certified Reference Materials, Draft Version, November 1994.

  22. ISO/REMCO N 278,Traceability of the Property Values of Certified Reference Materials, Draft Version March 1994.

  23. K. S. Subramanian, J. C. Meranger,Clin. Chem. 1981,27, 1866.

    Google Scholar 

  24. S. Waarst,Report on EMIT Assay for the Determination of Valproat in Plasma, Personal Communication, 1994.

  25. K. Heydorn,Mikrochim. Acta 1991,III, 1.

    Google Scholar 

  26. J. K. Taylor,Fresenius Z. Anal. Chem. 1988,332, 722.

    Google Scholar 

  27. J. C. Miller, J. N. Miller,Statistics for Analytical Chemistry, 3rd Ed., Ellis Horwood, Chichester, 1993.

    Google Scholar 

  28. P. Armitage, G. Berry,Statistical Methods in Medical Research, 2nd Ed., Blackwell, Oxford, 1971. p. 266.

    Google Scholar 

  29. S. L. Christensen, J. T. B. Anglov, J. M. Christensen, E. Olsen, O. M. Poulsen,Fresenius J. Anal. Chem. 1993,345, 343.

    Google Scholar 

  30. J. Kristiansen, J. M. Christensen, J. L. Nielsen,Mikrochim. Acta 1995,123, 241.

    Google Scholar 

  31. J. M. Christensen,Sci. Tot. Environ. 1995,166, 89.

    Google Scholar 

  32. S. D. Rasberry, T. E. Gills,Spectrochim. Acta 1991,46, 1577.

    Google Scholar 

  33. ISO Guide 30,Terms and Definitions Used in Connection with Reference Materials, Geneva, ISO 1992.

    Google Scholar 

  34. ISO/DIS 5725General Principles and Definitions, Part 1, Draft 1991.

  35. ISO/IEC, Guide 25,General Requirements for the Competence of Calibration and Testing Laboratories, 3rd Ed., Geneva, ISO, 1990.

    Google Scholar 

  36. ISO/IEC,Guide 49, Guidelines for Development of a Quality Manual for a Testing Laboratory, Geneva, ISO, 1986.

    Google Scholar 

  37. J. Kristiansen, J. M. Christensen, J. Merry, M. Tambo, S. A. Linde, B. Nyeland,Fresenius J. Anal. Chem. 1995,352, 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molin Christensen, J. Correcting measurement errors using reference materials in method validation. Mikrochim Acta 123, 231–240 (1996). https://doi.org/10.1007/BF01244396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244396

Key words

Navigation