Skip to main content
Log in

Evolution and impact of Standard Reference Materials (SRMs) for determining vitamin D metabolites

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health, Office of Dietary Supplements (NIH ODS), introduced the first Standard Reference Material® (SRM) for determining vitamin D metabolites in 2009 motivated by significant concerns about the comparability and accuracy of different assays to assess vitamin D status. After 14 years, a suite of five serum matrix SRMs and three calibration solution SRMs are available. Values were also assigned for vitamin D metabolites in five additional SRMs intended primarily to support measurements of other clinical diagnostic markers. Both the SRMs and the certification approach have evolved from significant exogenous serum content to primarily endogenous content and from value assignment by combining the results of multiple analytical methods to the use of measurements exclusively from reference measurement procedures (RMPs). The impact of the availability of these SRMs can be assessed by both the distribution information (sales) and by reports in the scientific literature describing their use for method validation, quality control, and research. In this review, we describe the development of these SRMs, the evolution in design and value assignment, the expansion of information reported, and SRM use in validating analytical methods and providing quality assurance within the vitamin D measurement community.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Sempos et al. [71]

Fig. 5
Fig. 6
Fig. 7

Adapted from Burdette et al. [82] and expanded with additional results

Similar content being viewed by others

References

  1. Wise SA. From urban dust and marine sediment to ginkgo biloba and human serum - A top ten list of Standard Reference Materials (SRMs). Anal Bioanal Chem. 2022;414:31–52.

    Article  CAS  PubMed  Google Scholar 

  2. Leech DP. The Economic Impacts of NIST’s Cholesterol Standards Program. National Institute of Standards and Technology (NIST) Gaitherburg, MD, 2000.

  3. Sempos CT, Vesper HW, Phinney KW, Thienpont LM, Coates PM. VDSP, Vitamin D status as an international issue: National surveys and the problem of standardization. Scand J Clin Lab Invest. 2012;72:32–40.

    CAS  Google Scholar 

  4. Wise SA, Tai SSC, Burdette CQ, Camara JE, Bedner M, Lippa KA, Nelson MA, Nalin F, Phinney KW, Sander LC, Betz JM, Sempos CT, Coates PM. Role of the National Institute of Standards and Technology (NIST) in support of the vitamin D initiative of the National Institutes of Health, Office of Dietary Supplements. J AOAC Int. 2017;100:1260–76.

    Article  CAS  PubMed  Google Scholar 

  5. Stepman HCM, Vanderroost A, Stöckl D, Thienpont LM. Full-scan mass spectral evidence for 3-epi-25-hydroxyvitamin D3 in serum of infants and adults. Clin Chem Lab Med. 2011;49:253–6.

    Article  CAS  PubMed  Google Scholar 

  6. Lensmeyer G, Poquette M, Wiebe D, Binkley N. The C-3 epimer of 25-hydroxyvitamin D3 Is present in adult serum. J Clin Endocrinol Metab. 2012;97:163–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bikle DD, Malmstroem S, Schwartz J. Current controversies are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol Metabol Clin North Amer. 2017;46:901–18.

    Article  Google Scholar 

  8. Heureux N. Vitamin D testing-where are we and what is on the horizon? In: Makowski GS, editor. Advances in Clinical Chemistry, vol. 78. San Diego: Elsevier Academic Press Inc; 2017. p. 59–101.

    Google Scholar 

  9. Tsuprykov O, Buse C, Skoblo R, Hocher B. Comparison of free and total 25-hydroxyvitamin D in normal human pregnancy. J Steroid Biochem Mol Biol. 2019;190:29–36.

    Article  CAS  PubMed  Google Scholar 

  10. Alexandridou A, Schorr P, Stokes CS, Volmer DA. Analysis of vitamin D metabolic markers by mass spectrometry: Recent progress regarding the "gold standard" method and integration into clinical practice. Mass Spectrom Rev. 2023;42:1647–87.

  11. Alonso N, Zelzer S, Eibinger G, Herrmann M. Vitamin D metabolites: Analytical challenges and clinical relevance. Calcif Tissue Int. 2023;112:158–77.

    Article  CAS  PubMed  Google Scholar 

  12. Altieri B, Cavalier E, Bhattoa HP, Perez-Lopez FR, Lopez-Baena MT, Perez-Roncero GR, Chedraui P, Annweiler C, Della Casa S, Zelzer S, Herrmann M, Faggiano A, Colao A, Holick MF. Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr. 2020;74:231–47.

    Article  PubMed  Google Scholar 

  13. Fraser WD, Tang JCY, Dutton JJ, Schoenmakers I. Vitamin D measurement, the debates continue, new analytes have emerged, developments have variable outcomes. Calcif Tissue Int. 2020;106:3–13.

    Article  CAS  PubMed  Google Scholar 

  14. Herrmann M. Assessing vitamin D metabolism - four decades of experience. Clin Chem Lab Med. 2023;61:880–94.

    Article  CAS  PubMed  Google Scholar 

  15. Volmer DA, Muller MJ, Lammert F, Stokes CS. Measurement of vitamin D Metabolic markers in human samples. Anticancer Res. 2015;35:3607–8.

    Google Scholar 

  16. Carter GD, Berry J, Durazo-Arvizu R, Gunter E, Jones G, Jones J, Makin HLJ, Pattni P, Sempos CT, Twomey P, Williams EL, Wise SA. Hydroxyvitamin D assays: An historical perspective from DEQAS. J Steroid Biochem Mol Biol. 2018;177:30–5.

    Article  CAS  PubMed  Google Scholar 

  17. Centers for Disease Control and Prevention (CDC). Vitamin D Standardization — Certification Program, Centers for Disease Control and Prevention, Atlanta, GA, USA. https://www.cdc.gov/labstandards/vdscp.html. Accessed 8 Jan 2024.

  18. Stokes CS, Lammert F, Volmer DA. Analytical methods for quantification of vitamin D and implications for research and clinical practice. Anticancer Res. 2018;38:1137–44.

    PubMed  Google Scholar 

  19. Volmer DA, Mendes L, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: Current techniques, limitations of the “gold standard” method and anticipated future directions. Mass Spectrom Rev. 2015;34:2–23.

    Article  CAS  PubMed  Google Scholar 

  20. Muller MJ, Volmer DA. Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D. Clin Chem. 2015;61:1033–48.

    Article  PubMed  Google Scholar 

  21. Singh RJ, Taylor RL, Reddy GS, Grebe SKG. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91:3055–61.

    Article  CAS  PubMed  Google Scholar 

  22. Wise SA, Camara JE, Sempos CT, Burdette CQ, Hahm G, Nalin F, Kuszak AJ, Merkel J, Durazo-Arvizu R, Hoofnagle AN, Williams EL, Ivison F, Fischer R, Van den Ouweland JMW, Ho CS, Law EWK, Simard J-N, Gonthier R, Holmquist B, Meadows S, Cox L, Robyak K, Creer MH, Fitzgerald R, Clarke MW, Breen N, Lukas P, Cavalier E. Interlaboratory comparison of 25-hydroxyvitamin D assays: Vitamin D Standardization Program (VDSP) intercomparison study 2 – Part 1 Liquid chromatography – tandem mass spectrometry (LC-MS/MS) assays – Impact of 3-epi-25-hydroxyvitamin D3 on assay performance. Anal Bioanal Chem. 2022;414:333–49.

    Article  CAS  PubMed  Google Scholar 

  23. Wise SA, Phinney KW, Tai SSC, Camara JE, Myers GL, Durazo-Arvizu R, Tian L, Hoofnagle AN, Bachmann LM, Young IS, Pettit J, Caldwell G, Liu A, Brooks SPJ, Sarafin K, Thamm M, Mensink GBM, Busch M, Rabenberg M, Cashman KD, Kiely M, Kinsella M, Galvin K, Zhang JY, Oh K, Lee SW, Jung CL, Cox L, Goldberg G, Guberg K, Prentice A, Carter GD, Jones J, Brannon PM, Lucas RM, Crump PM, Cavalier E, Merkel J, Betz JM, Sempos CT. Baseline assessment of 25-hydroxyvitamin D assay performance: A Vitamin D Standardization Program (VDSP) interlaboratory comparison study. J AOAC Int. 2017;100:1244–52.

    Article  CAS  PubMed  Google Scholar 

  24. Lensmeyer GL, Wiebe DA, Binkley N, Drezner MK. HPLC method for 25-hydroxyvitamin D measurement: Comparison with contemporary assays. Clin Chem. 2006;52:1120–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bedner M, Phinney KW. Development and comparison of three liquid chromatography-atmospheric pressure chemical ionization/mass spectrometry methods for determining vitamin D metabolites in human serum. J Chromatogr A. 2012;1240:132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman MS, Brandon TR, Groves MN, Gregory WL, Kapur S, Zava D. A liquid chromatography/tandem mass spectrometry method for determination of 25-hydroxy vitamin D2 and 25-hydroxy vitamin D3 in dried blood spots: A potential adjunct to diabetes and cardiometabolic risk screening. J Diabetes Sci Technol. 2009;3:156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schleicher RL, Encisco SE, Chaudhary-Webb M, Paliakov E, McCoy LF, Pfeiffer CM. Isotope dilution ultra performance liquid chromatography-tandem mass spectrometry method for simultaneous measurement of 25-hydroxyvitamin D2, 25-hydroxyvitamin D3 and 3-epi-25-hydroxyvitamin D3 in human serum. Clin Chim Acta. 2011;412:1594–9.

    Article  CAS  PubMed  Google Scholar 

  28. van den Ouweland JMW, Beijers AM, van Daal H. Fast separation of 25-hydroxyvitamin D3 from 3-epi-25-Hydroxyvitamin D3 in human serum by liquid chromatography-tandem mass spectrometry: Variable prevalence of 3-epi-25-hydroxyvitamin D3 in infants, children, and adults. Clin Chem. 2011;57:1618–9.

    Article  PubMed  Google Scholar 

  29. Looker AC, Pfeiffer CM, Lacher DA, Schleicher RL, Picciano MF, Yetley EA. Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am J Clin Nutr. 2008;88:1519–27.

    Article  CAS  PubMed  Google Scholar 

  30. Pollack A. Quest acknowledges errors in vitamin D tests. New York Times. 2009.

  31. Yetley EA, Pfeiffer CM, Schleicher RL, Phinney KW, Lacher DA, Christakos S, Eckfeldt JH, Fleet JC, Howard G, Hoofnagle AN, Hui SL, Lensmeyer GL, Massaro J, Peacock M, Rosner B, Wiebe D, Bailey RL, Coates PM, Looker AC, Sempos C, Johnson CL, Picciano MF. NHANES monitoring of serum 25-hydroxyvitamin D: A roundtable summary. J Nutr. 2010;140:2030S-2045S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carter GD. 25-Hydroxyvitamin D assays: The quest for accuracy. Clin Chem. 2009;55:1300–2.

    Article  CAS  PubMed  Google Scholar 

  33. Tai SSC, Bedner M, Phinney KW. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2010;82:1942–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. International Bureau of Weights and Measures (BIPM). Joint Committee for Guides in Metrology (JCGM), International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM) 3rd Ed, 2012. Available bipm.org/en/committees/jc/jcgm/publications. Accessed 6 Jan 2024.

  35. Panteghini M. Traceability, reference systems and result comparability, Biochimica. Clinica. 2007;31:247–53.

    Google Scholar 

  36. International Organization for Standardization (ISO). In Vitro Diagnostic Devices - Measurement of quantities in samples of biological origin - Requirements for content and presentation of reference measurement procedures, 2009.

  37. Schimmel H, Zegers I. Performance criteria for reference measurement procedures and reference materials. Clin Chem Lab Med. 2015;53:899–904.

    Article  CAS  PubMed  Google Scholar 

  38. May WE, Parris RM, Beck II CM, Fassett JD, Greenberg RR, Guenther FR, Kramer GW, Wise SA, Gills TE, Gettings R, MacDonald B. Definitions of terms and modes used at NIST for value assignment of reference materials for chemical measurment, NIST Special Publication 260–136, National Institute of Standards and Technology, Gaithersburg, MD, USA, 2000.

  39. Stepman HCM, Vanderroost A, Van Uytfanghe K, Thienpont LM. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope dilution liquid chromatography-tandem mass spectrometry. Clin Chem. 2011;57:441–8.

    Article  CAS  PubMed  Google Scholar 

  40. Mineva EM, Schleicher RL, Chaudhary-Webb M, Maw KL, Botelho JC, Vesper HW, Pfeiffer CM. A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407:5615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross AC, Taylor CL, Yaktine AL, Del Valle HB. Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: National Academies Press; 2011.

    Google Scholar 

  42. Sempos CT, Binkley N. 25-Hydroxvitamin D assay standardization and vitamin D guidelines paralysis. Public Health Nutr. 2020;23:1153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Epstein MS. The independent method concept for certifying chemical composition reference materials, Spectrochimica Acta Part B-Atomic. Spectroscopy. 1991;46:1583–91.

    Google Scholar 

  44. Wise SA, Phillips MM. Evolution of reference materials for the determination of organic nutrients in food and dietary supplements - a critical review. Anal Bioanal Chem. 2019;411:97–127.

    Article  CAS  PubMed  Google Scholar 

  45. Wise SA, Phinney KW, Sander LC, Schantz MM. Role of chromatography in the development of Standard Reference Materials for organic analysis. J Chromatogr A. 2012;1261:3–22.

    Article  CAS  PubMed  Google Scholar 

  46. Wise SA, Poster DL, Kucklick JR, Keller JM, VanderPol SS, Sander LC, Schantz MM. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem. 2006;386:1153–90.

    Article  CAS  PubMed  Google Scholar 

  47. Beauchamp CRC, Camara JE, Carney J, Choquette SJ, Cole KD, DeRose PC, Duewer DL, Epstein MS, Kline MC, Lippa KA, Lucon E, Malloy J, Nelson MA, Phnney KW, Polakoski M, Possolo A, Sander LC, Schiel JE, Sharpless KE, Toman B, Winchester MR, Windover D. Metrological tools for the reference materials and reference instruments of the NIST Materials Measurement Laboratory. Washington, DC: NIST Special Publication 260–136, U.S. Government Printing Office; 2021.

    Book  Google Scholar 

  48. Beauchamp CRC, Carney JE, Choquette SJ, Cole KD, DeRose PC, Epstein MS, Kline MC, Lippa KA, Lucon E, Phnney KW, Polakoski M, Sharpless KE, Sieber JR, Toman B, Winchester MR, Windover D. Metrological tools for the reference materials and reference instruments of the NIST Materials Measurement Laboratory. Washington, DC: NIST Special Publication 260–136, U.S. Government Printing Office; 2020.

    Book  Google Scholar 

  49. Ellerbe P, Meiselman S, Sniegoski LT, Welch MJ, White E. Determination of serum-cholesterol by a modification of the isotope-dilution mass-spectrometric definitive method. Anal Chem. 1989;61:1718–23.

    Article  CAS  PubMed  Google Scholar 

  50. Welch MJ, Cohen A, Hertz HS, Ng KJ, Schaffer R, Vanderlijn P, White E. Determination of serum creatinine by isotope dilution mass-spectrometry as a candidate definitive method. Anal Chem. 1986;58:1681–5.

    Article  CAS  PubMed  Google Scholar 

  51. Phinney KW, Bedner M, Tai SSC, Vamathevan VV, Sander LC, Sharpless KE, Wise SA, Yen JH, Schleicher RL, Chaudhary-Webb M, Pfeiffer CM, Betz JM, Coates PM, Picciano MF. Development and certification of a Standard Reference Material for vitamin D metabolites in human serum. Anal Chem. 2012;84:956–62.

    Article  CAS  PubMed  Google Scholar 

  52. Phinney KW, Ballihaut G, Bedner M, Benford BS, Camara JE, Christopher SJ, Davis WC, Dodder NG, Eppe G, Lang BE, Long SE, Lowenthal MS, McGaw EA, Murphy KE, Nelson BC, Prendergast JL, Reiner JL, Rimmer CA, Sander LC, Schantz MM, Sharpless KE, Sniegoski LT, Tai SSC, Thomas JB, Vetter TW, Welch MJ, Wise SA, Wood LJ, Guthrie WF, Hagwood CR, Leigh SD, Yen JH, Zhang NF, Chaudhary-Webb M, Chen HP, Fazili Z, LaVoie DJ, McCoy LF, Momin SS, Paladugula N, Pendergrast EC, Pfeiffer CM, Powers CD, Rabinowitz D, Rybak ME, Schleicher RL, Toombs BMH, Xu M, Zhang M, Castle AL. Development of a Standard Reference Material for metabolomics research. Anal Chem. 2013;85:11732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boggs ASP, Kilpatrick LE, Burdette CQ, Tevis DS, Fultz ZA, Nelson MA, Jarrett JM, Kemp JV, Singh RJ, Grebe SKG, Wise SA, Kassim BL, Long SE. Development of a pregnancy-specific reference material for thyroid biomarkers, vitamin D, and nutritional trace elements in serum. Clin Chem Lab Med. 2021;59:671–9.

    Article  CAS  PubMed  Google Scholar 

  54. Phinney KW, Tai SSC, Bedner M, Camara JE, Chia RRC, Sander LC, Sharpless KE, Wise SA, Yen JH, Schleicher RL, Chaudhary-Webb M, Maw KL, Rahmani Y, Betz JM, Merkel J, Sempos CT, Coates PM, Durazo-Arvizu RA, Sarafin K, Brooks SPJ. Development of an improved Standard Reference Material for vitamin D metabolites in human serum. Anal Chem. 2017;89:4907–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schleicher RL, Sternberg MR, Looker AC, Yetley EA, Lacher DA, Sempos CT, Taylor CL, Durazo-Arvizu RA, Maw KL, Chaudhary-Webb M, Johnson CL, Pfeiffer CM. National estimates of serum total 25-hydroxyvitamin D and metabolite concentrations measured by liquid chromatography-tandem mass spectrometry in the US population during 2007–2010. J Nutr. 2016;146:1051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tai SSC, Nelson MA, Bedner M, Lang BE, Phinney KW, Sander LC, Yen JH, Betz JM, Sempos CT, Wise SA. Development of Standard Reference Material (SRM) 2973 vitamin D metabolites in frozen human serum (high level). J AOAC Int. 2017;100:1294–303.

    Article  CAS  PubMed  Google Scholar 

  57. Hahm G, Nelson M, Camara J, Toman B. Certification of Standard Reference Materials 2969 and 2970: Vitamin D Metabolites in Frozen Human Serum (Total 25-Hydroxyvitamin D Low Level) and (25-Hydroxyvitamin D2 High Level). National Institute of Standards and Technology (NIST), Gaithersburg, MD, 2021.

  58. Cashman KD, Hayes A, Galvin K, Merkel J, Jones G, Kaufmann M, Hoofnagle AN, Carter GD, Durazo-Arvizu RA, Sempos CT. Significance of serum 24,25-dihydroxyvitamin D in the assessment of vitamin D status: A double-edged sword? Clin Chem. 2015;61:636–45.

    Article  CAS  PubMed  Google Scholar 

  59. Tai SSC, Nelson MA. Candidate reference measurement procedure for the determination of (24R),25-dihydroxyvitamin D3 in human serum using isotope dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2015;87:7964–70.

    Article  CAS  PubMed  Google Scholar 

  60. Best CM, Pressman EK, Queenan RA, Cooper E, O’Brien KO. Longitudinal changes in serum vitamin D binding protein and free 25-hydroxyvitamin D in a multiracial cohort of pregnant adolescents. J Steroid Biochem Mol Biol. 2019;186:79–88.

    Article  CAS  PubMed  Google Scholar 

  61. Jones KS, Assar S, Prentice A, Schoenmakers I. Vitamin D expenditure is not altered in pregnancy and lactation despite changes in vitamin D metabolite concentrations. Sci Rep. 2016;6:26795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsuprykov O, Buse C, Skoblo R, Hocher B. Free 25 (OH) vitamin D, but not total 25 (OH) vitamin D, is strongly correlated with gestational age and calcium in normal human pregnancy. J Bone Miner Res. 2017;32:S323.

    Google Scholar 

  63. Zhang JY, Lucey AJ, Horgan R, Kenny LC, Kiely M. Impact of pregnancy on vitamin D status: a longitudinal study. Br J Nutr. 2014;112:1081–7.

    Article  CAS  PubMed  Google Scholar 

  64. Henderson CM, Lutsey PL, Misialek JR, Laha TJ, Selvin E, Eckfeldt JH, Hoofnagle AN. Measurement by a novel LC-MS/MS methodology reveals similar serum concentrations of vitamin D-binding protein in blacks and whites. Clin Chem. 2016;62:179–87.

    Article  CAS  PubMed  Google Scholar 

  65. Kilpatrick LE, Phinney KW. Quantification of total vitamin-D-binding protein and the glycosylated isoforms by liquid chromatography isotope dilution mass spectrometry. J Proteome Res. 2017;16:4185–95.

    Article  CAS  PubMed  Google Scholar 

  66. Kilpatrick LE, Boggs ASP, Davis WC, Long SE, Yen JH, Phinney KW. Assessing a method and reference material for quantification of vitamin D binding protein during pregnancy. Clinical Mass Spectrometry. 2020;16:11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kilpatrick LE, Bouillon R, Davis WC, Henderson CM, Hoofnagle AN, Pauwels S, Vanderschueren D, Waelkens E, Wildiers H, Yen JH, Phinney KW. The influence of proteoforms: assessing the accuracy of total vitamin D-binding protein quantification by proteolysis and LC-MS/MS. Clin Chem Lab Med. 2023;61:78–85.

    Article  CAS  PubMed  Google Scholar 

  68. Bikle D, Bouillon R, Thadhani R, Schoenmakers I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J Steroid Biochem Mol Biol. 2017;173:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsuprykov O, Elitok S, Buse C, Chu C, Kramer BK, Hocher B. Opposite correlation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D metabolites with gestational age, bone and lipid-biomarkers in pregnant women. Sci Rep. 2021;11:10.

    Article  Google Scholar 

  70. Heureux N, Lindhout E, Swinkels L. A direct assay for measuring free 25-hydroxyvitamin D. J AOAC Int. 2017;100:1318–22.

    Article  CAS  PubMed  Google Scholar 

  71. Sempos CT, Lindhout E, Heureux N, Hars M, Parkington DA, Dennison E, Durazo-Arvizu R, Jones KS, Wise SA. Towards harmonization of directly measured free 25-hydroxyvitamin D using an enzyme-linked immunosorbent assay. Anal Bioanal Chem. 2022;414:7793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller WG, Myers GL. Commutability still matters. Clin Chem. 2013;59:1291–3.

    Article  CAS  PubMed  Google Scholar 

  73. Vesper HW, Miller WG, Myers GL. Reference materials and commutability. Clin Biochem Rev. 2007;28:139–47.

    PubMed  PubMed Central  Google Scholar 

  74. International Standards Organization (ISO). In vitro diagnostic medical devices — Measurement of quantities in samples of biological origin — Requirements for certified reference materials and the content of supporting documentation, Geneva, Switzerland, 2009.

  75. Phinney KW, Sempos CT, Tai SSC, Camara JE, Wise SA, Eckfeldt JH, Hoofnagle AN, Carter GD, Jones J, Myers GL, Durazo-Arvizu R, Miller WG, Bachmann LM, Young IS, Pettit J, Caldwell G, Liu A, Brooks SPJ, Sarafin K, Thamm M, Mensink GSM, Busch M, Rabenberg M, Cashman KD, Kiely M, Galvin K, Zhang JY, Kinsella M, Oh K, Lee SW, Jung CL, Cox L, Goldberg G, Guberg K, Meadows S, Prentice A. Baseline assessment of 25-hydroxyvitamin D reference material and proficiency testing/external quality assurance material commutability: A Vitamin D Standardization Program Study. J AOAC Int. 2017;100:1288–93.

    Article  CAS  PubMed  Google Scholar 

  76. Camara JE, Wise SA, Hoofnagle AN, Williams EL, Carter GD, Jones J, Burdette CQ, Hahm G, Nalin F, Kuszak AJ, Merkel J, Durazo-Arvizu RA, Lukas P, Cavalier E, Popp C, Beckert C, Schultess J, Van Slooten G, Tourneur C, Pease C, Kaul R, Villarreal A, Ivison F, Fischer R, van den Ouweland JMW, Ho CS, Law EWK, Simard JN, Gonthier R, Holmquist B, Batista MC, Pham H, Bennett A, Meadows S, Cox L, Jansen E, Khan DA, Robyak K, Creer MH, Kilbane M, Twomey PJ, Freeman J, Parker N, Yuan JY, Fitzgerald R, Mushtaq S, Clarke MW, Breen N, Simpson C, Sempos CT. Assessment of serum total 25-hydroxyvitamin D assay commutability of Standard Reference Materials and College of American Pathologists Accuracy-Based Vitamin D (ABVD) Scheme and Vitamin D External Quality Assessment Scheme (DEQAS) materials: Vitamin D Standardization Program (VDSP) Commutability Study 2. Anal Bioanal Chem. 2021;413:5067–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wise SA, Cavalier E, Camara JE, Lukas P, Peeters S, Le Goff C, Minerva E, Pfeiffer CM, Vesper H, Briggs LE, Williams EL, Popp C, Beckert C, W. K., Tourneur C, Pease C, Osterritter D, Fischer R, Saida B, Dou C, Satoshi K, Weiler H, Bielecki A, Pham H, Bennett A, You S, Ghoshal AK, Vogel C, Freeman J, Parker N, Yang P, Cheek J, Li J, Tsukamoto H, Galvan K, Cashman KD, Lawrence L, Hoofnagle AN, Boggs ASP, Burdette CQ, Hahm G, Nalin F, Kuszak AJ. Commutability assessment of new Standard Reference Materials for serum total 25-hydroxyvitamin D using ligand binding assays and liquid chromatography – tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem. to be submitted 2024.

  78. Nilsson G, Budd JR, Greenberg N, Delatour V, Rej R, Panteghini M, Ceriotti F, Schimmel H, Weykamp C, Keller T, Camara JE, Burns C, Vesper HW, MacKenzie F, Miller WG, Commutability IWG. IFCC working group recommendations for assessing commutability part 2: Using the difference in bias between a reference material and clinical samples. Clin Chem. 2018;64:455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DEQAS, Vitamin D External Quality Assessment Scheme (DEQAS);www.deqas.org. Accessed 8 Jan 2024.

  80. Bedner M, Lippa KA, Tai SS-C, Burdette CQ. NIST/NIH Vitamin D Metabolites Quality Assurance Program (VitDQAP): Final Report, NISTIR 8293, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 2020.

  81. Bedner M, Lippa KA, Tai SSC. An assessment of 25-hydroxyvitamin D measurements in comparability studies conducted by the Vitamin D Metabolites Quality Assurance Program. Clin Chim Acta. 2013;426:6–11.

    Article  CAS  PubMed  Google Scholar 

  82. Burdette CQ, Camara JE, Nalin F, Pritchett J, Sander LC, Carter GD, Jones J, Betz JM, Sempos CT, Wise SA. Establishing an accuracy basis for the Vitamin D External Quality Assessment Scheme (DEQAS). J AOAC Int. 2017;100:1277–87.

    Article  CAS  PubMed  Google Scholar 

  83. Erdman P, Palmer-Toy DE, Horowitz G, Hoofnagle A. Accuracy-based vitamin D survey six years of quality improvement guided by proficiency testing. Arch Pathol Lab Med. 2019;143:1531–8.

    Article  CAS  PubMed  Google Scholar 

  84. Bedner M, Lippa KA, STai SS-C. NIST/NIH Vitamin D Metabolites Quality Assurance Program Report of Participant Results: Winter 2012 Comparability Study (Exercise 5), National Institute of Standards and Technology (NIST), Gaithersburg, MD, 2013.

  85. Centers for Disease Control and Prevention (CDC). Vitamin D Reference Method Laboratory, Atlanta, GA, https://www.cdc.gov/labstandards/csp/vdscp_laboratory.html. Accessed 8 Jan 2024.

  86. Teo TL, Lippa KA, Mackay L, Yong S, Liu QD, Camara JE, Delatour V, Lee TK, Lalere B, O’Connor G, Henrion A, Kato M, Numata M, Kwon HJ, Jeong JS, Xu B, Song DW, Nammoonnoy J, Wollinger W. Enhancing the accuracy of measurement of small molecule organic biomarkers. Anal Bioanal Chem. 2019;411:7341–55.

    Article  CAS  PubMed  Google Scholar 

  87. Wise SA, Tai SSC, Duewer DL, Bedner M, Camara JE, Lippa KA, Qinde L, Kang D, Kim B, Quan C. CCQM-K132: low-polarity analytes in a biological matrix: vitamin D metabolites in human serum. Metrologia. 2017;54:08027.

  88. Linsinger T. Comparison of a measurement result with the certified value, Application Note 1, Jan 2010, available at https://crm.jrc.ec.europa.eu/graphics/cms_docs/erm1_english.pdf. Accessed 15 Jan 2024.

  89. Sharpless KE, Lippa KA, Duewer DL, Rukhin AL. The ABC’s of Using Standard Reference Materials in the Analysis of Foods and Dietary Supplements: A Practical Guide. NIST Special Publication 260–136, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2014.

  90. S. Wood, Using reference materials to establish metrological traceability, Application Note 3, Feb. 2008 avialable at https://crm.jrc.ec.europa.eu/graphics/cms_docs/erm3_english.pdf. Accessed 15 Jan 2024.

  91. Wallace AM, Gibson S, de la Hunty A, Lamberg-Allardt C, Ashwell M. Measurement of 25-hydroxyvitamin D in the clinical laboratory: Current procedures, performance characteristics and limitations. Steroids. 2010;75:477–88.

    Article  CAS  PubMed  Google Scholar 

  92. Hymoller L, Jensen SK. Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C-30 reversed phase column and UV detection - Easy and acetonitrile-free. J Chromatogr A. 2011;1218:1835–41.

    Article  CAS  PubMed  Google Scholar 

  93. Bogusz MJ, Al Enazi E, Tahtamoni M, Jawaad JA, Al Tufail M. Determination of serum vitamins 25-OH-D2 and 25-OH-D3 with liquid chromatography-tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray source and core-shell or sub-2 um particle columns: a comparative study. Clin Biochem. 2011;44:1329–37.

    Article  CAS  PubMed  Google Scholar 

  94. Adamec J, Jannasch A, Huang JJ, Hohman E, Fleet JC, Peacock M, Ferruzzi MG, Martin B, Weaver CM. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J Sep Sci. 2011;34:11–20.

    Article  CAS  PubMed  Google Scholar 

  95. Mochizuki A, Kodera Y, Saito T, Satoh M, Sogawa K, Nishimura M, Seimiya M, Kubota M, Nomura F. Preanalytical evaluation of serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 measurements using LC-MS/MS. Clin Chim Acta. 2013;420:114–20.

    Article  CAS  PubMed  Google Scholar 

  96. Strathmann FG, Sadilkova K, Laha TJ, LeSourd SE, Bornhorst JA, Hoofnagle AN, Jack R. 3-epi-25 hydroxyvitamin D concentrations are not correlated with age in a cohort of infants and adults. Clin Chim Acta. 2012;413:203–6.

    Article  CAS  PubMed  Google Scholar 

  97. Phinney KW, Camara JE, Tai SSC, Sander LC, Wise SA, De Grande LAC, Thienpont LM, Possolo AM, Toman B, Sempos CT, Betz JM, Coates PM. Value assignment of vitamin D metabolites in Vitamin D Standardization Program serum samples. J AOAC Int. 2017;100:1253–9.

    Article  CAS  PubMed  Google Scholar 

  98. Dowling KG, Hull G, Sundvall J, Lamberg-Allardt C, Cashman KD. Improved accuracy of an tandem liquid chromatography-mass spectrometry method measuring 24R,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D metabolites in serum using unspiked controls and its application to determining cross-reactivity of a chemiluminescent microparticle immunoassay. J Chromatogr A. 2017;1497:102–9.

    Article  CAS  PubMed  Google Scholar 

  99. Donnarumma D, Arena A, Trovato E, Rigano F, Zoccali M, Mondello L. A miniaturized comprehensive approach for total lipidome analysis and vitamin D metabolite quantification in human serum. Anal Bioanal Chem. 2023;415:4579–90.

    Article  CAS  PubMed  Google Scholar 

  100. Micalizzi G, Vento F, Buzzanca C, Salerno TMG, Mondello L. Fast gas chromatography-tandem mass spectrometry under milder electron ionization conditions for the assay of vitamin D metabolites in human serum, J Chromatogr B-Anal Technol Biomed Life Sci. 2023;1227:123813.

  101. Moon HW, Cho JH, Hur M, Song J, Oh GY, Park CM, Yun YM, Kim JQ. Comparison of four current 25-hydroxyvitamin D assays. Clin Biochem. 2012;45:326–30.

    Article  CAS  PubMed  Google Scholar 

  102. Janssen MJW, Wielders JPM, Bekker CC, Boesten LSM, Buijs MM, Heijboer AC, van der Horst FAL, Loupatty FJ, van den Ouweland JMW. Multicenter comparison study of current methods to measure 25-hydroxyvitamin D in serum. Steroids. 2012;77:1366–72.

    Article  CAS  PubMed  Google Scholar 

  103. Pirkle JL. Laboratory Procedure Manual 25-Hydroxyvitamin D3, C3-epimer-25-Hydroxyvitamin D3 and 25-Hydroxyvitamin D2 in Serum by High Performance Liquid Chromatography - Tandem Mass Spectrometry (Method 4027.07), Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA, 2020.

  104. Durazo-Arvizu RA, Tian L, Brooks SPJ, Sarafin K, Cashman KD, Kiely M, Merkel J, Myers GL, Coates PM, Sempos CT. The Vitamin D Standardization Program (VDSP) manual for retrospective laboratory standardization of serum 25-hydroxyvitamin D data. J AOAC Int. 2017;100:1234–43.

    Article  CAS  PubMed  Google Scholar 

  105. Schleicher RL, Sternberg MR, Lacher DA, Sempos CT, Looker AC, Durazo-Arvizu RA, Yetley EA, Chaudhary-Webb M, Maw KL, Pfeiffer CM, Johnson CL. The vitamin D status of the US population from 1988 to 2010 using standardized serum concentrations of 25-hydroxyvitamin D shows recent modest increases. Am J Clin Nutr. 2016;104:454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cashman KD, Kiely M, Kinsella M, Durazo-Arvizu RA, Tian L, Zhang Y, Lucey A, Flynn A, Gibney MJ, Vesper HW, Phinney KW, Coates PM, Picciano MF, Sempos CT. Evaluation of Vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: a case study of the program’s potential for national nutrition and health surveys. Am J Clin Nutr. 2013;97:1235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S, Moreno L, Damsgaard CT, Michaelsen KF, Molgaard C, Jorde R, Grimnes G, Moschonis G, Mavrogianni C, Manios Y, Thamm M, Mensink GBM, Rabenberg M, Busch MA, Cox L, Meadows S, Goldberg G, Prentice A, Dekker JM, Nijpels G, Pilz S, Swart KM, van Schoor NM, Lips P, Eiriksdottir G, Gudnason V, Cotch MF, Koskinen S, Lamberg-Allardt C, Durazo-Arvizu RA, Sempos CT, Kiely M. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103:1033–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cashman KD, Dowling KG, Skrabakova Z, Kiely M, Lamberg-Allardt C, Durazo-Arvizu RA, Sempos CT, Koskinen S, Lundqvist A, Sundvall J, Linneberg A, Thuesen B, Husemoen LLN, Meyer HE, Holvik K, Gronborg IM, Tetens I, Andersen R. Standardizing serum 25-hydroxyvitamin D data from four Nordic population samples using the Vitamin D Standardization Program protocols: Shedding new light on vitamin D status in Nordic individuals. Scand J Clin Lab Invest. 2015;75:549–61.

    Article  CAS  PubMed  Google Scholar 

  109. Sarafin K, Durazo-Arvizu R, Tian L, Phinney KW, Tai S, Camara JE, Merkel J, Green E, Sempos CT, Brooks SPJ. Standardizing 25-hydroxyvitamin D values from the Canadian Health Measures Survey. Am J Clin Nutr. 2015;102:1044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rabenberg M, Scheidt-Nave C, Busch MA, Thamm M, Rieckmann N, Durazo-Arvizu RA, Dowling KG, Skrabakova Z, Cashman KD, Sempos CT, Mensink GBM. Implications of standardization of serum 25-hydroxyvitamin D data for the evaluation of vitamin D status in Germany, including a temporal analysis. BMC Public Health. 2018;18:14.

    Article  Google Scholar 

  111. Miyamoto H, Kawakami D, Hanafusa N, Nakanishi T, Miyasaka M, Furutani Y, Ikeda Y, Ito K, Kato T, Yokoyama K, Arakawa S, Saito M, Furusho T, Matsuura T, Ochi S. Determination of a serum 25-hydroxyvitamin D reference ranges in Japanese adults using fully automated liquid chromatography - tandem mass spectrometry. J Nutr. 2023;153:1253–64.

    Article  PubMed  Google Scholar 

  112. Breen N, Wardle R, Davey L, Lambert P, Roche D, Crushell M, Calton LJ. Performance characteristics of the Mass Trak vitamin D solution, Application Note, Waters Corporation, 2019, revised April 2022, available at https://www.waters.com/nextgen/us/en/library/application-notes/2017/performance-characteristics-of-the-masstrak-vitamin-d-solution.html. Accessed 15 Jan 2024.

  113. Quantimetrix, Complete D 25-OH Vitamin D Control, Quantimetrix, Redondo Beach, CA, USA, avialable at https://quantimetrix.com/product/complete-d-25-oh-vitamin-d-control/. Accessed 15 Jan 2024.

  114. National Institue of Standards and Technology (NIST), NIST Policy on Metrological Traceability, 2021, available at NIST.gov/calibrations/traceability. Accessed 6 Jan 2024.

Download references

Acknowledgements

The authors acknowledge Paul M. Coates (NIH ODS, retired), Joseph M Betz (NIH ODS, retired), and Mary Francis Picciano (NIH ODS, deceased) for their foresight and support in the development of vitamin D metabolite SRMs. We acknowledge Christopher T. Sempos (NIH-ODS, retired) for his leadership of the Vitamin D Standardization Program. We also acknowledge the NIST chemists involved in vitamin D metabolite measurements: Mary Bedner, Carolyn Q. Burdette, Grace Hahm, and particularly Susan C. Tai for her exceptional work in the development of RMPs and the certification of SRMs. We acknowledge Karen W. Phinney (NIST) for leadership in the development of SRM 972 and SRM 972a and David Duewer (NIST) for statistical consultation. We acknowledge Rosemary L. Schleicher (CDC, retired) and Christine M. Pfieffer (CDC) and CDC chemists for their measurements contributing to the certification of SRM 972 and SRM 972a and for coordination and participation in commutability studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Wise.

Ethics declarations

Disclaimer

The opinions expressed in this article are the authors’ own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, the National Institute of Standards and Technology, the Department of Commerce, or the United States government. Any citations of commercial organizations and trade names in this report do not constitute an official NIH or NIST endorsement of approval of the products or services of these organizations.

Conflict of interest

S. A. Wise is an Editor of the journal Analytical and Bioanalytical Chemistry and was not involved in peer reviewing this manuscript. There are no financial or nonfinancial conflicts of interest for any of the coauthors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 681 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wise, S.A., Kuszak, A.J. & Camara, J.E. Evolution and impact of Standard Reference Materials (SRMs) for determining vitamin D metabolites. Anal Bioanal Chem 416, 2335–2358 (2024). https://doi.org/10.1007/s00216-024-05143-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05143-w

Keywords

Navigation