Skip to main content
Log in

Potassium-selective optrode based on an immobilized fluorogenic crown ether

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new optical sensor phase for potassium ions has been developed based on the immobilization of the pH-dependent fluorogenic crown ether 4-acryloylamidobenzo-18-crown-6 on the non-ionic polymeric resin Amberlite XAD-2.

Two different optical designs, a flow-through sensor and a fibre optic probetype sensor (optrode), have been constructed and their analytical performance characteristics have been evaluated. The resulting fluorimetric sensors for K+ ions exhibited detection limits of 0.4 or 0.8 μM of K+ (16 μg/l or 31 μg/l), depending on the design, while the linear response occurred from 1 to 25 μM of the metal concentrations. The precision, evaluated as the relative standard deviation of measurements of K+ levels at around ten times the detection limit (e.g. 5 μM), turned out to be around ±2%.

Advantageous features of this fluorimetric sensing phase and optrode include ease of construction, simplicity of use, reversibility, short response times (ca. 1 min full scale deflection) selectivity and operational stability, suitable for sensing potassium at low levels in complex matrices such as biological fluids.

The fluorimetric optical sensor has been successfully applied to the direct determination of potassium in clinically important samples (serum and urine) and in natural waters. Very good accuracy has been obtained just using adequate synthetic aqueous potassium standards for calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Schultze, A. R. Nissenson, in:Clinical Disorders of Fluid and Electrolyte Metabolism (M. H. Maxwell, C. R. Kleeman, eds.), McGraw-Hill, New York, 1980.

    Google Scholar 

  2. H. G. J. Worth,Analyst 1988,113, 373.

    Google Scholar 

  3. W. R. Seitz,CRC Crit. Rev. Anal. Chem. 1988,19, 135.

    Google Scholar 

  4. O. S. Wolfbeis, in:Molecular Luminescence Spectroscopy: Methods and Applications, Part I (J. G. Schulman, ed.), Wiley, New York, 1988, pp. 129–281.

    Google Scholar 

  5. J. O. W. Norris,Analyst 1989,114, 1359.

    Google Scholar 

  6. B. A. Woods, J. Ruzicka, G. D. Christian, R. J. Charlson,Anal. Chem. 1986,58, 2496.

    Google Scholar 

  7. A. Sanz-Medel,Anal. Chim. Acta 1993,283, 367.

    Google Scholar 

  8. O. S. Wolfbeis, B. P. H. Schaffar,Anal. Chim. Acta 1987,198, 1.

    Google Scholar 

  9. B. P. H. Schaffar, O. S. Wolfbeis, A. Leitner,Analyst 1988,113, 693.

    Google Scholar 

  10. Y. Kawabata, R. Tahara, T. Kamichika, T. Imasaka, N. Ishibashi,Anal. Chem. 1990,62, 1528.

    Google Scholar 

  11. Y. Kawabata, T. Imasaka, N. Ishibashi,Anal. Chim. Acta 1991,255, 97.

    Google Scholar 

  12. J. N. Roe. F. C. Szoka, A. S. Verkman,Analyst 1990,115, 353.

    Google Scholar 

  13. K. Suzuki, H. Ohzora, K. Tohda, K. Miyazaki, K. Watanabe, H. Inoue, T. Shirai,Anal. Chim. Acta 1990,237, 155.

    Google Scholar 

  14. K. Wang, W. E. Morf, U. Spichiger, W. Simon, E. Lindner, E. Pungor,Anal. Sci. 1990,6, 715.

    Google Scholar 

  15. H. He, H. Li, G. Mohr, B. Kovács, T. Werner, O. S. Wolfbeis,Anal. Chem. 1993,65, 123.

    Google Scholar 

  16. S. Patai, Z. Rappoport (eds.)Crown Ethers and Analogs, Wiley, New York, 1989.

    Google Scholar 

  17. L. F. Lindoy,The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  18. A. Sanz-Medel, D. B. Gomis, J. R. G. Alvarez,Talanta 1981,28, 425.

    Google Scholar 

  19. H. G. Löhr, F. Vögtle,Acc. Chem. Res. 1985,18, 65.

    Google Scholar 

  20. G. E. Pacey, Y. P. Wu, B. P. Bubnis,Analyst 1981,106, 636.

    Google Scholar 

  21. H. Nakamura, H. Nishida, M. Takagi, K. Ueno,Anal. Chim. Acta 1982,139, 219.

    Google Scholar 

  22. S. C. Charlton, R. L. Fleming, A. Zipp,Clin. Chem. 1982,28, 1857.

    Google Scholar 

  23. A. Kumar, E. Chapoteau, B. P. Czech, C. R. Gebauer, M. Z. Chimenti, O. Raimondo,Clin. Chem. 1988,34, 1709.

    Google Scholar 

  24. R. H. Ng, K. M. Sparks, B. E. Statland,Clin. Chem. 1992,38, 1371.

    Google Scholar 

  25. J. F. Alder, D. C. Ashworth, R. Narayanaswamy,Analyst 1987,112, 1191.

    Google Scholar 

  26. S. M. S. Al-Amir, D. C. Ashworth, R. Narayanaswamy, R. E. Moss,Talanta 1989,36, 645.

    Google Scholar 

  27. R. Pereiro-García, F. Alava-Moreno, M. E. Díaz-García, A. Sanz-Medel, R. Narayanaswamy,Clin. Chim. Acta 1992,207, 31.

    Google Scholar 

  28. F. Alava-Moreno, R. Pereiro-García, M. E. Díaz-García, A. Sanz-Medel,Sensors and Actuators B 1993,11, 413.

    Google Scholar 

  29. D. C. Ashworth, H. P. Huang, R. Narayanaswamy,Anal. Chim. Acta 1988,213, 251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-García, M.E., Alava-Moreno, F. & Sanz-Medel, A. Potassium-selective optrode based on an immobilized fluorogenic crown ether. Mikrochim Acta 113, 211–222 (1994). https://doi.org/10.1007/BF01243612

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243612

Key words

Navigation