Skip to main content
Log in

Ultrasensitive and highly selective detection of nickel ion by two novel optical sensors

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel optical sensors for nickel determination by incorporation of 5-(2`-bromo-phenylazo)-6-hydroxypyrimidine-2,4-dione (I), 5-(2`,4`-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (II), dibutylphthalate (DBP) and sodium tetra-phenylborate (Na-TPB) to the plasticized polyvinyl chloride matrices were prepared. The introduction of DBP in the membrane substantially increased the ability of both ionophores I and II to function as chromo ionophores. The advantages of the reported sensors include great stability, reproducibility, and relatively long lifespan, as well as excellent selectivity for Ni2+ ion detection across a wide range of alkali, alkaline earth, transition, and heavy metal ions.Under optimized membrane compositions and experimental parameters, the response of both sensors was linear throughout a concentration range of 3.5 × 10−8 to 8.1 × 10−5 and 2.0 × 10−8 to 5.1 × 10−5 M for I and II, respectively. Sensor detection and quantification limits based on the definition that the concentration of the sample leads to a signal equal to the blank signal plus three and ten times its standard deviation were determined to be 1.15 × 10−8 and 3.45 × 10−8 M when utilizing I, whereas they were 0.61 × 10−8 and 1.95 × 10−8 M when utilizing II, respectively. The reaction time of optodes is defined as the period required achieving 95% of based sensors and found to be 8.0 and 5.0 min using I and II, respectively. Ni2+ ion concentrations in water, food, and environmental samples were effectively determined using the proposed optical sensors.

Graphical Abstract

Representative diagram for preparation of the sensing Ni2+ sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials should be available upon request.

References

  1. Steinberg IM, Lobnik A, Wolfbeis OS. Characterisation of an optical sensor membrane based on the metal ion indicator pyrocatechol violet. Sens Actuators B. 2003;90:230–5. https://doi.org/10.1016/S0925-4005(03)00033-9.

    Article  CAS  Google Scholar 

  2. Merian E Ed. Metals and their compounds in the environment, vol. 22, part 2. VCH, New York; 1991.

  3. Cempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15:75–382.

    Google Scholar 

  4. Bohn HL, McNeal BL, O’Connor GA. Soil chemistry. 2nd ed. Chichester: Wiley Interscience; 1985.

    Google Scholar 

  5. Frisbie SH, Mitchell EJ, Sarkar B. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water. Environ Health. 2015;14:63–5. https://doi.org/10.1186/s12940-015-0050-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazloum M, Niassary MS, Amini MK. Pentacyclooctaaza as a neutral carrier in coated-wire ion-selective electrode for nickel(II). Sens Actuators B. 2002;82:259–64. https://doi.org/10.1016/S0925-4005(01)01017-6.

    Article  CAS  Google Scholar 

  7. Repo E, Warchol JK, Kurniawan TA, Sillanpaa MET. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J. 2010;161:73–82. https://doi.org/10.1016/j.cej.2010.04.030.

    Article  CAS  Google Scholar 

  8. Fu F, Chen R, Xiong Y. Comparative investigation of N, N-bis(dithio-carboxy)piperazine and diethyldithiocarbamate as precipitants for Ni(II) in simulated wastewater. J Hazard Mater. 2007;142:437–42. https://doi.org/10.1016/j.jhazmat.2006.08.036.

    Article  CAS  PubMed  Google Scholar 

  9. Amais RS, Ribeiro JS, Segatelli MG, Yoshida IVP, Luccas PO, et al. Assessment of nanocomposite alumina supported on multi-wall carbon nano-tubes as sorbent for on-line nickel preconcentration in water samples. Sep Purif Technol. 2007;58:122–8. https://doi.org/10.1016/j.seppur.2007.07.024.

    Article  CAS  Google Scholar 

  10. Dadfarnia S, Shabani AMH, Bidabadi MS, Jafari AA. A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest. J Hazard Mater. 2010;173:534–8. https://doi.org/10.1016/j.jhazmat.2009.08.118.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmadpour A, Tahmasbi M, Rohani Bastami T, AmelBesharati J. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mat. 2009;166:925–30. https://doi.org/10.1016/j.jhazmat.2008.11.103.

    Article  CAS  Google Scholar 

  12. Winiarski J, Popowicz E, Zdrojewicz Z. Nickel - role in human organism and toxic effects. Pol Med J XLI. 2016;241:115–8.

    Google Scholar 

  13. Guide lines for Drinking Water Quality. Health criteria and other supporting information, vol. 2, 2nd edn. World Health Organization, Geneva; 1998.

  14. Alizadeh K, Nemati H, Zohrevand S, Hashemi P, Kakanejadifard A, Shamsipur M, Ganjali MR, Faridbod F. Selective dispersive liquid–liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiff’s base bisazanyl derivative. Mater Sci Eng C. 2013;33:916–22. https://doi.org/10.1016/j.msec.2012.11.021.

    Article  CAS  Google Scholar 

  15. Gupta VK, Prasad R, Kumar P, Mangla R. New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraaza-annulene in a poly(vinyl chloride) matrix. Anal Chim Acta. 2000;420:19–27. https://doi.org/10.1016/S0003-2670(00)01013-8.

    Article  CAS  Google Scholar 

  16. Soares BM, Santos RF, Bolzan RC, Muller EI, Primela EG, Duarte FA. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta. 2016;160:454–60. https://doi.org/10.1016/j.talanta.2016.07.040.

    Article  CAS  PubMed  Google Scholar 

  17. Erulaş FA. Sensitive determination of nickel at trace levels in surface water samples by slotted quartz tube flame atomic absorption spectrometry after switchable solvent liquid-phase microextraction. Environ Monit Assess. 2020;192:272–8. https://doi.org/10.1007/s10661-020-8208-3.

    Article  CAS  PubMed  Google Scholar 

  18. Padilla V, Serrano N, Díaz-Cruz JM. Determination of trace levels of nickel(II) by adsorptive stripping voltammetry using a disposable and low-cost carbon screen-printed electrode. Chemosensors. 2021;9:94–105. https://doi.org/10.3390/chemosensors9050094.

    Article  CAS  Google Scholar 

  19. Shinde AD, Acharya R, Reddy AVR. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal mono-standard neutron activation analysis methods. Nucl Eng Technol. 2017;49:562–8. https://doi.org/10.1016/j.net.2016.09.009.

    Article  Google Scholar 

  20. Pozzatti M, Nakadi FV, Rale MG, Welz B. Simultaneous determination of nickel and iron in vegetables of Solanaceae family using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Microchem J. 2017;133:162–7. https://doi.org/10.1016/j.microc.2017.03.021.

    Article  CAS  Google Scholar 

  21. Soukal J, Musil S. Detailed evaluation of conditions of photochemical vapor generation for sensitive determination of nickel in water samples by ICP-MS detection. Microchem J. 2022;172:106963. https://doi.org/10.1016/j.microc.2021.106963.

    Article  CAS  Google Scholar 

  22. Gab-Allah MA, Shehata AB. Determination of iron, nickel, and vanadium in crude oil by inductively coupled plasma optical emission spectrometry following microwave-assisted wet digestion. Chem Pap. 2021;75:4239–48. https://doi.org/10.1007/s11696-021-01633-8.

    Article  CAS  Google Scholar 

  23. Ferreira VJ, Lemos VA, Teixeira LSG. Dynamic reversed-phase liquid-liquid microextraction for the determination of Cd, Cr, Mn, and Ni in vegetable oils by energy dispersive X-ray fluorescence spectrometry. J Food Compos Anal. 2023;117:105098. https://doi.org/10.1016/j.jfca.2022.105098.

    Article  CAS  Google Scholar 

  24. Rehan I, Gondal MA, Rehan K, Sultana S, Khan S, Rehman MU, Waheed A, Salman SM. Nondestructive determination of chromium, nickel, and zinc in neem leaves and facial care products by laser induced breakdown spectroscopy (LIBS). Anal Lett. 2022;55:990–1003. https://doi.org/10.1080/00032719.2021.1979572.

    Article  CAS  Google Scholar 

  25. Alharthi SS, Al-Saidi HM. Designing a simple semi-automated system for preconcentration and determination of nickel in some food samples using dispersive liquid–liquid microextraction based upon orange peel oil as extraction solvent. Arab J Chem. 2022;15:104094. https://doi.org/10.1016/j.arabjc.2022.104094.

    Article  CAS  Google Scholar 

  26. Yang X, Yan C, Sun Y, Liu Y, Yang S, Deng Q, Wen X. Micro-spectrophotometric determination of nickel in Gentiana rigescens after switchable hydrophilicity solvent-based ultrasound-assisted liquid phase microextraction. Microchem J. 2021;168:106402. https://doi.org/10.1016/j.microc.2021.106402.

    Article  CAS  Google Scholar 

  27. Bahrami M, Shabani AMH, Dadfarnia S, Moghadam MR, Baneshi M. Experimental design optimization of supramolecular dispersive liquid–liquid microextraction of nickel and its spectrophotometric determination. J Anal Chem. 2021;76:442–51. https://doi.org/10.1134/S106193482104002X.

    Article  CAS  Google Scholar 

  28. Fendrych K, Porada R, Ba B. Electrochemical sensing platform based on Zeolite/Graphite/ Dimethylglyoxime nanocomposite for highly selective and ultrasensitive determination of nickel. J Hazard Mater. 2023;448:130953. https://doi.org/10.1016/j.jhazmat.2023.130953.

    Article  CAS  PubMed  Google Scholar 

  29. Rasolzadeh F, Hashemi P, Rezaei B. Aryl triazene derivative immobilized on agarose membrane for selective optical sensing and quantitation of Ni2+ in water. J Iran Chem Soc. 2019;16:1283–9. https://doi.org/10.1007/s13738-019-01603-8.

    Article  CAS  Google Scholar 

  30. Jun-jie L, Chanf-jun H, Dan-qun H, Cai-hong S, Xiao-ganga L, Huan-baod F, Mei Y, JundaKey Z. Detection of trace nickel ions with a colorimetric sensor based on indicator displacement mechanism. Sens Actuators B. 2017;241:1294–302. https://doi.org/10.1016/j.snb.2016.09.191.

    Article  CAS  Google Scholar 

  31. Alizadeh K, Rezaei B, Khazaeli E. An agarose based optical membrane sensor for selective monitoring of trace nickel ions. J Photochem Photobiol A. 2021;417:113371. https://doi.org/10.1016/j.jphotochem.2021.113371.

    Article  CAS  Google Scholar 

  32. Suherman S, Hakim MS, Kuncaka A. Optical chemical sensor based on 2,2-furildioxime in sol-gel matrix for determination of Ni2+ in water. Processes. 2021;9:280–8. https://doi.org/10.3390/pr9020280.

    Article  CAS  Google Scholar 

  33. Assiri MA, Junaid HM, Waseem MT, Hamad A, Shah SH, Iqbal J, Rauf W, Shahzad SA. AIEE active sensors for fluorescence enhancement based detection of Ni2+ in living cells: mechano-fluorochromic and photochromic properties with reversible sensing of acid and base. Anal Chim Acta. 2022;1234:340516. https://doi.org/10.1016/j.aca.2022.340516.

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal J, Du Y, Howari F, Muhammad N, Rahim A. Simultaneous enrichment and on-line detection of low- concentration copper, cobalt, and nickel ions in water by near-infrared diffuse reflectance spectroscopy combined with chemometrics. J AOAC Int. 2017;100:560–5. https://doi.org/10.5740/jaoacint.16-0224.

    Article  CAS  PubMed  Google Scholar 

  35. Bodkhe GA, Khandagale DD, More MS, Deshmukh MA, Ingle NN, Sayyad PW, Mahadik MM, Shirsat SM, Al-Buriahi MS, Tsai M-L, Kim M, Shirsat MD. Ag@MOF-199 metal organic framework for selective detection of nickel ions in aqueous media. Ceramics Int. 2023;49:6772–9. https://doi.org/10.1016/j.ceramint.2022.10.135.

    Article  CAS  Google Scholar 

  36. MohdDaniyal WMEM, Fen YW, Kamal Eddin FB, Abdullah J, Mahdi MA. Surface plasmon resonance assisted optical characterization of nickel ion solution and nanocrystalline cellulose-graphene oxide thin film for sensitivity enhancement analysis. Phys B. 2022;646:414292. https://doi.org/10.1016/j.physb.2022.414292.

    Article  CAS  Google Scholar 

  37. Rossi A, Zannotti M, Cuccioloni M, Minicucci M, Petetta L, Angeletti M, Giovannetti R. Silver nanoparticle-based sensor for the selective detection of nickel ions. Nanomaterials. 2021;11:1733–48. https://doi.org/10.3390/nano11071733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rastegarzadeh S, Pourreza N, Saeedi I. An optical chemical sensor for thorium (IV) determination based on thorin. J Hazard Mater. 2010;173:110–4. https://doi.org/10.1016/j.jhazmat.2009.08.055.

    Article  CAS  PubMed  Google Scholar 

  39. Beiraghi A, Babaee S, Roshdi M. Spectrophotometric determination of trace amounts of beryllium using 1,8-dihydroxyanthrone as a new chromogenic reagent. J Hazard Mater. 2011;190:962–8. https://doi.org/10.1007/BF03247233.

    Article  CAS  PubMed  Google Scholar 

  40. Ensafi AA, Katiraeifar A, Meghdadi S. Highly selective optical-sensing film for lead (II) determination in water samples. J Hazard Mater. 2009;172:1069–75. https://doi.org/10.1016/j.jhazmat.2009.07.112.

    Article  CAS  PubMed  Google Scholar 

  41. Shamsipur M, Sadeghi M, Alizadeh K, Bencini A, Valtancoli B, et al. Novel fluorimetric bulk optode membrane based on 5,8-bis ((5-chloro-8-hydroxy-7-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane for selective detection of lead(II) ions. Talanta. 2010;80:2023–33. https://doi.org/10.1016/j.talanta.2009.11.011.

    Article  CAS  PubMed  Google Scholar 

  42. Amin AS. Optical chemical Sensor of lutetium(III) in water based on 2-nitro-6-(thiazol-2-yldiazenyl)phenol immobilized on polymethyl methacrylate and 2-nitrophenyl octyl ether matrix. Eurasian J Anal Chem. 2018;13:1–12.

    Article  Google Scholar 

  43. Al-Mallah Z, Amin AS. Utilization of a triacetylcellulose membrane to immobilize 5-(2`,4`-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione for erbium determination in real sample. J Ind Eng Chem. 2018;63:281–7. https://doi.org/10.1016/j.jiec.2018.02.027.

    Article  CAS  Google Scholar 

  44. Hassan N, Amin AS. Membrane optode for uranium(VI) preconcentration and colorimetric determination in real samples. RSC Adv. 2017;7:46566–74. https://doi.org/10.1039/C7RA08942B.

    Article  CAS  Google Scholar 

  45. Badini GE, Grattan KTV, Tseung ACC. Impregnation of a pH-sensitive dye into sol-gels for fibre optic chemical sensors. Analyst. 1995;120:1025–8. https://doi.org/10.1039/AN9952001025.

    Article  CAS  Google Scholar 

  46. Mahendra N, Gangaiya P, Sotheeswaran S, Narayanswamy R. Investigation of a Cu(II) fibre optic chemical sensor using fast sulphon black F (FSBF) immobilised onto XAD-7. Sens Actuators B. 2002;81:196–201. https://doi.org/10.1016/j.snb.2004.10.062.

    Article  CAS  Google Scholar 

  47. Sanchez-Pedreno C, Garcıa MS, Ortuno JA, Albero MI, Ballester E. Development of a new flow-through bulk optode for the determination of manganese(II). Fresenius J Anal Chem. 2001;369:680–3. https://doi.org/10.1007/s002160100742.

    Article  CAS  PubMed  Google Scholar 

  48. Safavi A, Sadeghi M. Design and evaluation of a thorium (IV) selective optode. Anal Chim Acta. 2006;567:184–8. https://doi.org/10.1016/j.aca.2006.03.027.

    Article  CAS  Google Scholar 

  49. Shamsipur M, Poursaberi T, Avanes A, Sharghi H. Copper(II)-selective fluorimetric bulk optode membrane based on a 1-hydroxy-9,10-anthraquinone derivative having two propenyl arms as a neutral fluorogenic ionophore. Spectrochim Acta A. 2006;63:43–8. https://doi.org/10.1016/j.saa.2005.04.013.

    Article  CAS  Google Scholar 

  50. Sands TJ, Cardwell TJ, Cattrall RW, Farrell JR, Iles PJ, Kolev SD. A highly versatile stable optical sensor based on 4-decyloxy-2-(2-pyridylazo)-1-naphthol in Nafion for the determination of copper. Sens Actuators B. 2002;85:33–41. https://doi.org/10.1016/S0925-4005(02)00047-3.

    Article  CAS  Google Scholar 

  51. Rouhollahi A, Shamsipur M. Triiodide PVC membrane electrode based on a charge-transfer complex of iodine with 2,4,6,8-tetraphenyl-2,4,6,8-tetraaza-bicyclo[3.3.0]octane. Anal Chem. 1999;71:1350–3. https://doi.org/10.1021/ac981077x.

    Article  CAS  PubMed  Google Scholar 

  52. Britton HTS. Hydrogen ions. 4th ed. London: Chapman and Hall; 1952.

    Google Scholar 

  53. Amin AS, Ahmed IS. Complexation and spectrophotometric study of samarium(III) using pyrimidine azo derivatives in the presence of cetyltri-methyl ammonium bromide. Anal Lett. 2010;43:2598–608. https://doi.org/10.1080/00032711003726910.

    Article  CAS  Google Scholar 

  54. Amin AS. Determination of tin(IV) in alloys and in canned food by visible spectrophotometric technique using pyrimidine azo compounds in presence of mixed surfactants. Ann Chim. 2002;92:729–38.

    CAS  PubMed  Google Scholar 

  55. Amin AS, Mohammed TY. Simultaneous spectrophotometric determination of thorium and rare earth metals with pyrimidine azo dyes and cetylpyridinium chloride. Talanta. 2001;54:611–6. https://doi.org/10.1016/S0039-9140(00)00679-2.

    Article  CAS  PubMed  Google Scholar 

  56. Amin AS, Mohammed TY, Mousa AA. Spectrophotometric studies and applications for the determination of yttrium in pure and in nickel base alloys. Spectrochim Acta B. 2003;59:2577–84. https://doi.org/10.1016/S1386-1425(03)00040-4.

    Article  CAS  Google Scholar 

  57. ASTM Designation 4638, American Society for Testing and Materials, West Conshohocken, PA; 1995.

  58. Shariff R, Aachary AA, Pacquette LH, Mittal AK, Girdhar R. Analytical method validation and determination of iron and phosphorus in vegetable oil by inductively coupled plasma–mass spectrometry with microwave assisted digestion. Anal Lett. 2018;51:1774–88. https://doi.org/10.1080/00032719.2017.1387554.

    Article  CAS  Google Scholar 

  59. Oehme I, Prattes S, Wolfbeis OS, Mohr GJ. The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on the colorimetric reagent Zincon. Talanta. 1998;47:595–604. https://doi.org/10.1016/S0039-9140(98)00084-8.

    Article  CAS  PubMed  Google Scholar 

  60. Absalan G, Soleimani M, Asadi M, Ahmadi MB. Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetone ethylendiamine) tributylphosphin cobalt(III) tetraphenyl borate complex-coated triacetylcellulose. Anal Sci. 2004;20:1433–6. https://doi.org/10.2116/analsci.20.1433.

    Article  CAS  PubMed  Google Scholar 

  61. Uhrovčík J. Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta. 2014;119:178–80. https://doi.org/10.1016/j.talanta.2013.10.061.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar M, Rathore DPS, Singh AK. Amberlite XAD-2 functionalized with o-aminophenol: synthesis and applications as extractant for copper(II), cobalt(II), cadmium(II), nickel(II), zinc(II) and lead(II). Talanta. 2000;51:1187–96. https://doi.org/10.1016/S0039-9140(00)00295-2.

    Article  CAS  PubMed  Google Scholar 

  63. Ferreira SLC, dos Santosa WNL, Lemos VA. On-line preconcentration system for nickel determination in food samples by flame atomic absorption spectrometry. Anal Chim Acta. 2001;445:145–51. https://doi.org/10.1016/S0003-2670(01)01262-4.

    Article  CAS  Google Scholar 

  64. Narin I, Soylak M. The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta. 2003;60:215–22. https://doi.org/10.1016/S0039-9140(03)00039-0.

    Article  CAS  PubMed  Google Scholar 

  65. Kenduzler E, Baytak S, Yalcınkaya O, Turker AR. Application of factorial design in optimization of nickel preconcentration by solid phase extraction and its determination in water and food samples by flame atomic absorption spectrometry. Can J Anal Sci Spect. 2007;52:91–94. https://hdl.net/20.500.12513/1873.

  66. Arpa C, Bektas S. Preconcentration and determination of lead, cadmium and nickel from water samples using a polyethylene glycol dye immobilized on poly (hydroxyethylmethacrylate) microspheres. Anal Sci. 2006;22:1025–9. https://doi.org/10.2116/analsci.22.1025.

    Article  CAS  PubMed  Google Scholar 

  67. Ghaedi M, Ahmadi F, Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater. 2007;142:272–8. https://doi.org/10.1016/j.jhazmat.2006.08.012.

    Article  CAS  PubMed  Google Scholar 

  68. Ciftci H, Yalcin H, Eren E, Olcucu A, Sekerci M. Enrichment and determination of Ni2+ ions in water samples with a diamino-4-(4-nitro-phenylazo)-1H-pyrazole (PDANP) by using FAAS. Desalination. 2010;256:48–53. https://doi.org/10.1016/j.desal.2010.02.018.

    Article  CAS  Google Scholar 

  69. Praveen RS, Daniel S, Rao TP. Solid phase extraction preconcentration of cobalt and nickel with 5, 7-dichloroquinone-8-ol embedded styrene–ethylene glycol dimethacrylate polymer particles and determination by flame atomic absorption spectrometry (FAAS). Talanta. 2005;66:513–20. https://doi.org/10.1016/j.talanta.2004.11.026.

    Article  CAS  PubMed  Google Scholar 

  70. Rezaei B, Hadadzadeh H, Azimi A. Nickel(II) selective PVC-based membrane sensor using a Schiff base. Int J Spect. 2011;2011:1–7. https://doi.org/10.1155/2011/746372.

    Article  CAS  Google Scholar 

  71. Amini MK, Momeni-Isfahani T, Khorasani JH, Pourhossein M. Development of an optical chemical sensor based on 2-(5-bromo-2-pyridylazo)-5-(diethylamino) phenol in Nafion for determination of nickel ion. Talanta. 2004;63:713–20. https://doi.org/10.1016/j.talanta.2003.12.032.

    Article  CAS  PubMed  Google Scholar 

  72. Ensafi AA, Bakhshi M. New stable optical film sensor based on immobilization of 2-amino-1-cyclopentene-1-dithiocarboxylic acid on acetyl cellulose membrane for Ni(II) determination. Sens Actuators B. 2003;96:435–40. https://doi.org/10.1016/j.talanta.2003.12.032.

    Article  CAS  Google Scholar 

  73. Hashemi P, Hosseini M, Zargoosh K, Alizadeh K. High sensitive optode for selective determination of Ni2+ based on the covalently immobilized thionine in agarose membrane. Sens Actuators B. 2011;153:24–8. https://doi.org/10.1016/j.snb.2010.09.068.

    Article  CAS  Google Scholar 

  74. Shamsipur M, Poursaberi T, Karami AR, Hosseini M, Momeni A, Alizadeh N, Yousefi M, Ganjali MR. Development of a new fluorimetric bulk optode membrane based on 2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole) for nickel(II) ions. Anal Chim Acta. 2004;501:55–60. https://doi.org/10.1016/j.aca.2003.09.008.

    Article  CAS  Google Scholar 

  75. Babaee S, Pakdehi SG, Nabavi AS. An optical chemical sensor for determination of nickel in water and hydrogen peroxide samples. J New Develop Chem. 2016;1:58–69. https://doi.org/10.14302/issn.2377-2549.jndc-16-1212.

    Article  Google Scholar 

  76. Alizadeh K, Rezaei B, Khazaeli E. A new triazene-1-oxide derivative, immobilized on the triacetylcellulose membrane as an optical Ni2+ sensor. Sens Actuators B. 2014;193:267–72. https://doi.org/10.1016/j.snb.2013.11.061.

    Article  CAS  Google Scholar 

  77. Yoshikuni N, Baba T, Tsunoda N, Oguma K. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel. Talanta. 2005;66:40–4. https://doi.org/10.1016/j.talanta.2004.09.014.

    Article  CAS  PubMed  Google Scholar 

  78. Desai VK, Desai KK. 2-Hydroxy-4-isopropoxyacetophenone thiosemi-carbazone as a spectrophotometric reagent for nickel(II). Orient J Chem. 1996;12:203–14.

    CAS  Google Scholar 

  79. Otomo M, Watanabe T, Moriya M. Solvent extraction and spectrophoto-metric determination of nickel(II) with thiazole-2-carbaldehyde 2-quinolyl- hydrazone. Anal Sci. 1986;2:549–52. https://doi.org/10.2116/analsci.2.549.

    Article  Google Scholar 

  80. Jadhav VA, Kulkarni MU. 7-Methyl-2-chloroquinoline-3-carbaldehyde thiosemicarbazone as analytical reagent for copper,-cobalt- and nickel (II). J Indian Chem Soc. 1992;69:287–9.

    CAS  Google Scholar 

  81. Reddy AV, Reddy YK. Sequential extraction and determination of copper and nickel with 2,4-dihydroxyacetophenone thiosemicarbazone, sequential extraction and determination of copper and nickel with 2,4-dihydroxy-acetophenone thiosemicarbazone. Talanta. 1986;33:617–9. https://doi.org/10.1016/0039-9140(86)80141-2.

    Article  CAS  PubMed  Google Scholar 

  82. Ramachandraiah C, Kumar JR, Reddy KJ, Narayana SL, Reddy AV. Development of a highly sensitive extractive spectrophotometric method for the determination of nickel(II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone. J Environ Manag. 2008;88:729–36. https://doi.org/10.1016/j.jenvman.2007.03.033.

    Article  CAS  Google Scholar 

  83. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 5th ed. London: Prentice-Hall; 2005.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Department of Chemistry, Faculty of Science, Benha, Port Said, and Taibah Universities, for providing instrumental facilities.

Author information

Authors and Affiliations

Authors

Contributions

Reem F. Alshehri and Eman R. Darwish supplied analyzed, collected, designed interpreted data and wrote the paper. The paper has been read and approved by all authors. Alaa S. Amin conceived and designed the work and wrote the paper.

Corresponding author

Correspondence to Alaa S. Amin.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflicts of interests

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshehri, R.F., Amin, A.S. & Darwish, E.R. Ultrasensitive and highly selective detection of nickel ion by two novel optical sensors. Anal Bioanal Chem 415, 5695–5707 (2023). https://doi.org/10.1007/s00216-023-04845-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04845-x

Keywords

Navigation