Skip to main content
Log in

Arguments against 5-hydroxytryptamine as neurotransmitter in the rabbit retina

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The indoleamine accumulating retinal neurons are visualized only by uptake of exogenously applied indoleamines but lack fluorescence in the normal retina. These neurons have now been studied in the rabbit after pretreatment with L-tryptophan and a monoamine oxidase inhibitor with an improved histofluorescence method based on perfusion with formaldehyde-glyoxylic acid pH 4.5 containing high amounts of magnesium. The method does not, however, reveal any indoleamine fluorescence in the retina. Also, p-chloroamphetamine has no toxic effect on the neurons. Selective inhibitors of the uptake of 5-hydroxytryptamine have a lower inhibitory effect in the retina than in the hypothalamus. A substance other than 5-hydroxytryptamine is therefore suggested to be the transmitter of the indoleamine accumulating neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, A. Studies of morphology, chemistry and function in isolated retina. In: Biochemistry of the Retina (Graymore, C. N., ed.), pp. 22–30. London: Academic Press. 1965.

    Google Scholar 

  • Axelsson, S., Björklund, A., Seiler, N. Identification of bufotenine in toad brain by chromatography and mass spectrometry of its dans-derivative. Life Sci.10, 745–749 (1971).

    Google Scholar 

  • Baumgarten, H. G., Björklund, A. Neurotoxic indoleamines and monoamine neurons. Ann. Rev. Pharmacol. Toxicol.16, 101–111 (1976).

    Google Scholar 

  • Björklund, A., Falck, B., Owman, C. Fluorescence microscopic and microspectrofluorometric techniques for the cellular localization and characterization of biogenic amines. In: Methods of Investigative and Diagnostic Endocrinology (Rall, J. E., Kopin, J., eds.), pp. 318–368. Amsterdam: North Holland Publ. Comp. 1972.

    Google Scholar 

  • Björklund, A., Falck, B., Stenevi, U. On the possible existence of a new intraneuronal monoamine in the spinal cord of the rat. J. Pharmacol. Exp. Ther.175, 525–532 (1970).

    PubMed  Google Scholar 

  • Björklund, A., Falck, B., Stenevi, U. Microspectrofluorometric characterization of monoamines in the central nervous system: Evidence for a new neuronal monoamine-like compound. In: Progress in Brain Research (Eränkö, O., ed.), Vol. 34, pp. 63–73. Amsterdam: Elsevier. 1971.

    Google Scholar 

  • Bloom, F. E., Battenberg, E. L. F. A rapid, simple and sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid-induced fluorescence. J. Histochem. Cytochem.24, 561–571 (1976).

    PubMed  Google Scholar 

  • Boulton, A. A., Majer, J. R. Determination and quantitative analysis of some noncatechol primary amines. In: Research Methods in Neurochemistry (Marks, N., Rodnight, R., eds.), Vol. I, pp. 341–355. New York: Plenum Press. 1972.

    Google Scholar 

  • Dowling, J. E., Ehinger, B., Floren, I.: Fluorescence and electron microscopical observations on the indoleamine accumulating neurons of the Cebus monkey retina. 1979 (in preparation).

  • Ehinger, B. Adrenergic retinal neurons. Z. Zellforsch.71, 146–152 (1966).

    Google Scholar 

  • Ehinger, B., Florén, I. Indoleamine accumulating neurons in the retina of rabbit, cat and goldfish. Cell Tiss. Res.175, 37–48 (1976).

    Google Scholar 

  • Ehinger, B., Florén, I. Quantitation of the uptake of indoleamines and dopamine in the rabbit retina. Exp. Eye Res.26, 1–11 (1978 a).

    PubMed  Google Scholar 

  • Ehinger, B., Floren, I. Chemical removal of indoleamine accumulating terminals in rabbit and goldfish retina. Exp. Eye Res.26, 321–328 (1978 b).

    PubMed  Google Scholar 

  • Ehinger, B., Holmberg, K., Öhman, P. Aminergic and indoleamine accumulating neurons in the retina of the river lamprey (Lampetra Fluviatilis). Acta Zool. (Stockholm)58, 117–123 (1977).

    Google Scholar 

  • Ehinger, B., Holmgren, I. Electron microscopy of the indoleamine accumulating neurons in the retina of the rabbit. Cell Tiss. Res.197, 175–194 (1979).

    Google Scholar 

  • Falck, B., Owman, C. A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic amines. Acta Univ. Lund., Sectio II.7, 1–23 (1965).

    Google Scholar 

  • Florén, I.: Indoleamine accumulating neurons in the retina of chicken and pigeon. A comparison with dopaminergic neurons. Acta Ophthalmol. (Kph.). 1979 (in press).

  • Florén, I., Hansson, H. C.: Investigations into whether 5-hydroxytryptamine is a neurotransmitter in the retina of rabbit and chicken. Invest. Ophthalmol. 1979 (in press).

  • Fuxe, K., Jonsson, G. A modification of the histochemical fluorescence method for the improved localization of 5-hydroxytryptamine. Histochemie11, 161–166 (1967).

    PubMed  Google Scholar 

  • Green, A. R., Koslow, S. H., Costa, E. Identification and quantitation of a new indole alkylamine in rat hypothalamus. Brain Res.51, 371–374 (1973).

    PubMed  Google Scholar 

  • Harvey, J. A., McMaster, S. E., Yunger, L. p-chloroamphetamine: selective neurotoxic action in brain. Science187, 841–843 (1975).

    PubMed  Google Scholar 

  • Hauschild, D. C., Laues, A. M. An indoleamine-containing cell in chick retina. Invest. Ophthalmol.12, 537–540 (1973).

    PubMed  Google Scholar 

  • Häggendal, J., Malmfors, T. Evidence of dopamine-containing neurons in the retina of the rabbit. Acta Physiol. Scand.59, 295–296 (1963).

    PubMed  Google Scholar 

  • Häggendal, J., Malmfors, T. Identification and cellular localization of the catecholamines in the retina and the choroid of the rabbit. Acta Physiol. Scand.64, 58–66 (1965).

    PubMed  Google Scholar 

  • Hökfelt, T., Ljungdahl, Å. Modification of the Falck-Hillarp formaldehyde fluorescence method using the Vibratome®: simple, rapid and sensitive localization of catecholamines in sections of unfixed or formalinfixed brain tissue. Histochemie29, 325–339 (1972).

    PubMed  Google Scholar 

  • Koslow, S. H. 5-methoxytryptamine: a possible central nervous system transmitter. In: Advances in Biochemical Psychopharmacology (Costa, E., Gessa, G. L., Sandler, M., eds.), Vol. 11, pp. 95–100. New York: Raven Press. 1974.

    Google Scholar 

  • Levene, R. Z. Mast cells and amines in normal ocular tissue. Invest. Ophthalmol.1, 531–543 (1962).

    PubMed  Google Scholar 

  • Lindvall, O., Björklund, A., Hökfelt, T., Ljungdahl, Å. Application of the glyoxylic acid method to Vibratome sections for improved visualization of central catecholamine neurons. Histochemie35, 31–38 (1973).

    PubMed  Google Scholar 

  • Loŕen, L., Björklund, A., Lindvall, O. An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochemistry49, 177–192 (1976).

    PubMed  Google Scholar 

  • Massari, V. J., Tizabi, Y., Gottesfeld, Z., Jacobowitz, D. M. A fluorescence histochemical and biochemical evaluation of the effect of p-chloroamphetamine on individual serotonergic nuclei in the rat brain. Neuroscience3, 339–344 (1978).

    PubMed  Google Scholar 

  • Petersen, E. N., Olsson, S.-O., Squires, R. F. Effects of 5-HT uptake inhibitors on the pressor response to 5-HT in the pithed rat. The significance of the 5-HT blocking property, Eur. J. Pharmacol.43, 209–215 (1977).

    PubMed  Google Scholar 

  • Ross, S. B., Renyi, A. L. Inhibition of the neuronal uptake of 5-hydroxytryptamine and noradrenaline in rat brain by (Z)- and (E)-3-(4-bromophenyl)-N, N-dimethyl-3-(3-pyridyl) allylamines and their secondary analogues. Neuropharmacology16, 57–63 (1977).

    PubMed  Google Scholar 

  • Saavedra, J. M., Axelrod, J. Brain tryptamine and the effects of drugs. In: Advances in Biochemical Psychopharmacology (Costa, E., Gessa, G. L., Sandler, M., eds.), Vol. 10, pp. 135–139. New York: Raven Press. 1974.

    Google Scholar 

  • Sanders-Bush, E., Bushing, J. A., Sulser, F. Long-term effects of p-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in brain. Eur. J. Pharmacol.20, 385–388 (1972).

    PubMed  Google Scholar 

  • Shaskan, E. G., Snyder, S. H. Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J. Pharmacol. Exp. Ther.175, 404–418 (1970).

    PubMed  Google Scholar 

  • Snodgrass, S. R., Horn, A. S. An assay procedure for tryptamine in brain and spinal cord using its [3H] dansyl derivative. J. Neurochem.21, 687–696 (1973).

    PubMed  Google Scholar 

  • Suzuki, O., Noguchi, E., Miyake, S., Yagi, K. Occurrence of 5-hydroxytryptamine in chick retina. Experientia33, 927–928 (1977).

    PubMed  Google Scholar 

  • Welsh, J. H. The quantitative distribution of 5-hydroxytryptamine in the nervous system, eyes and other organs of some vertebrates. In: Comparative Neurochemistry—Proc. of the 5th International Neurochemistry Symposium, pp. 355–366. Oxford-London-New York-Paris: Pergamon Press. 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florén, I. Arguments against 5-hydroxytryptamine as neurotransmitter in the rabbit retina. J. Neural Transmission 46, 1–15 (1979). https://doi.org/10.1007/BF01243425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243425

Keywords

Navigation