Skip to main content

5,6- and 5,7-Dihydroxytryptamines as Serotoninergic Neurotoxins

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dihydroxytryptamines are able to selectively destroy central serotonin neurons when catecholaminergic neurons are protected. Compared to serotonin, 5,6-dihydroxytryptamine (5,6-DHT) and 5,7-dihydroxytryptamine (5,7-DHT) are indole derivatives that acquire their neurotoxicity due to additional hydroxyl groups on the indole ring. Factors influencing the action of dihydroxytryptamines include the site of injection, the speed and volume of injection, the amount and type of antioxidant used, the type of anesthesia, and the dose and type of catecholamine uptake blocker. Two major hypotheses have been proposed to explain the molecular mechanism that underlies the toxicity of 5,6- and 5,7-DHT. The first suggests that highly reactive (electrophilic) quinonoid intermediates, created as a result of 5,6- and 5,7-DHT auto-oxidation, bind covalently to molecules indispensable for neuronal function. The second hypothesis states that during the auto-oxidation of dihydroxylated tryptamines, reactive oxygen species such as superoxide radical anion (O2 ), hydrogen peroxide (H2O2), and the hydroxyl radical (HO·) are generated as toxic by-products. The use of 5,6- and 5,7-DHT in both adult and neonatal animals enables the recognition the role of 5-HT in locomotor activity (LMA), prepulse inhibition, seizure susceptibility, sleeping behavior, feeding and drinking behavior, sexual and aggressive behavior, the regulation of body temperature, the response to novel and noxious stimuli, learning and memory, the antinociceptive action of drugs, neuroendocrine regulatory mechanisms, and developmental plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine, serotonin

5-HTP:

5-hydroxytryptophan

5,6-DHT:

5,6-dihydroxytryptamine

5,7-DHT:

5,7-dihydroxytryptamine

6-OHDA:

6-hydroxydopamine

CNS:

Central nervous system

DA:

Dopamine

DRN:

Dorsal raphe nuclei

DTPA:

Diethylene triamine pentaacetic acid

FSH:

Follicle-stimulating hormone

GH:

Growth hormone

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

HO:

Hydroxyl radical

L-5-HTP:

5-hydroxy-L-tryptophan

LMA:

Locomotor activity

MAO:

Monoamine oxidase

MAOI:

Monoamine oxidase inhibitor

MRN:

Median raphe nuclei

NA:

Noradrenaline

NGF:

Nerve growth factor

O2 :

Superoxide radical anion

PPI:

Prepulse inhibition

PTZ:

Pentylenetetrazol

REM:

Rapid eye movements

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Ahmad, G., & Zamenhof, S. (1978). Serotonin as a growth factor for chick embryo brain. Life Sciences, 22(11), 963–970.

    CAS  PubMed  Google Scholar 

  • Asin, K. E., & Fibiger, H. C. (1984). Spontaneous and delayed spatial alternation following damage to specific neuronal elements within the nucleus medianus raphe. Behavioural Brain Research, 13(3), 241–250.

    CAS  PubMed  Google Scholar 

  • Azmitia, E. C. (2001). Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Research Bulletin, 56(5), 413–424.

    CAS  PubMed  Google Scholar 

  • Bailey, C. H., Montarolo, P., Chen, M., Kandel, E. R., & Schacher, S. (1992). Inhibitors of protein and RNA synthesis block structural changes that accompany long-term heterosynaptic plasticity in Aplysia. Neuron, 9(4), 749–758.

    CAS  PubMed  Google Scholar 

  • Barbas, D., DesGroseillers, L., Castellucci, V. F., Carew, T. J., & Marinesco, S. (2003). Multiple serotonergic mechanisms contributing to sensitization in aplysia: Evidence of diverse serotonin receptor subtypes. Learning and Memory, 10(5), 373–386.

    PubMed Central  PubMed  Google Scholar 

  • Baumgarten, H. G., & Bjorklund, A. (1976). Neurotoxic indoleamines and monoamine neurons. Annual Review of Pharmacology and Toxicology, 16, 101–111.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., & Lachenmayer, L. (1972). 5,7-dihydroxytryptamine: Improvement in chemical lesioning of indoleamine neurons in the mammalian brain. Zeitschrift für Zellforschung und mikroskopische Anatomie, 135(3), 399–414.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., & Schlossberger, H. G. (1973). Effects of 5,6-dihydroxytryptamine on brain monoamine neurons in the rat. In J. D. Barchas (Ed.), Serotonin and behavior (pp. 209–224). New York: Academic.

    Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., Nobin, A., & Stenevi, U. (1971). Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta Physiologica Scandinavica. Supplementum, 373, 1–15.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Evetts, K. D., Holman, R. B., Iversen, L. L., Vogt, M., & Wilson, G. (1972). Effects of 5,6-dihydroxytryptamine on monoaminergic neurones in the central nervous system of the rat. Journal of Neurochemistry, 19(6), 1587–1597.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., & Nobin, A. (1973). Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the rat CNS. Acta Physiologica Scandinavica. Supplementum, 391, 1–19.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., & Bogdanski, D. F. (1975a). Similarities and differences in the mode of action of 6-hydroxy-dopamine and neurotoxic indoleamines. In G. Jonnson, T. Malmfors, & C. H. Sachs (Eds.), Chemical tools in catecholamine research (pp. 59–66). Amsterdam/North-Holland/New York: American Elsevier.

    Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Nobin, A., Rosengren, E., & Schlossberger, H. G. (1975b). Neurotoxicity of hydroxylated tryptamines: Structure-activity relationships. 1. Long-term effects on monoamine content and fluorescence morphology of central monoamine neurons. Acta Physiologica Scandinavica. Supplementum, 429, 5–27.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Lachenmayer, L., & Bjorklund, A. (1977). Chemical lesioning of indoleamine pathways. In R. D. Myers (Ed.), Methods in psychobiology (pp. 47–98). New York: Academic.

    Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., & Wuttke, W. (1978a). Neural control of pituitary LH, FSH and prolactin secretion: The role of serotonin. In D. E. Scott, G. P. Kozlowski, & A. Weindl (Eds.), Brain-endocrine interaction (pp. 327–343). Basel/New York: Karger.

    Google Scholar 

  • Baumgarten, H. G., Klemm, H. P., Lachenmayer, L., Bjorklund, A., Lovenberg, W., & Schlossberger, H. G. (1978b). Mode and mechanism of action of neurotoxic indoleamines: A review and a progress report. Annals of the New York Academy of Sciences, 305, 3–24.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Klemm, H. P., Lachenmayer, L., & Schlossberger, H. G. (1978c). Effect of drugs on the distribution of [14C]-5,6-dihydroxytryptamine and [14C]-5,7-dihydroxytryptamine in rat brain. Annals of the New York Academy of Sciences, 305, 107–118.

    CAS  PubMed  Google Scholar 

  • Baumgarten, H. G., Jenner, S., & Schlossberger, H. G. (1979). Serotonin neurotoxins: Effects of drugs on the destruction of brain serotonergic, noradrenergic and dopaminergic axons in the adult rat by intraventricularly, intracisternally or intracerebrally administered 5,7-dihydroxytryptamine and related compounds. In I. W. Chubb & L. B. Geffen (Eds.), Neurotoxins, fundamental and clinical advances (pp. 221–226). Adelaide: Adelaide University Union Press.

    Google Scholar 

  • Baumgarten, H. G., Jenner, S., & Klemm, H. P. (1981). Serotonin neurotoxins: Recent advances in the mode of administration and molecular mechanism of action. Journal of Physiology, Paris, 77(2–3), 309–314.

    CAS  Google Scholar 

  • Baumgarten, H. G., Jenner, S., Bjorklund, A., Klemm, H. P., & Schlossberger, H. G. (1982a). Serotonin neurotoxin. In N. N. Osborne (Ed.), Biology of serotonergic transmission (pp. 249–277). New York: Wiley.

    Google Scholar 

  • Baumgarten, H. G., Klemm, H. P., Sievers, J., & Schlossberger, H. G. (1982b). Dihydroxytryptamines as tools to study the neurobiology of serotonin. Brain Research Bulletin, 9(1–6), 131–150.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., Nobin, A., & Stenevi, U. (1973). The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons. Zeitschrift für Zellforschung und mikroskopische Anatomie, 145(4), 479–501.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., Baumgarten, H. G., Lachenmayer, L., & Rosengren, E. (1975a). Recovery of brain noradrenaline after 5,7-dihydrixytryptamine-induced axonal lesions in rat. Cell and Tissue Research, 161(2), 145–155.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., Baumgarten, H. G., & Rensch, A. (1975b). 5,7-Dihydroxytryptamine: Improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine. Journal of Neurochemistry, 24(4), 833–835.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., Horn, A. S., Baumgarten, H. G., Nobin, A., & Schlossberger, H. G. (1975c). Neurotoxicity of hydroxylated tryptamines: Structure-activity relationships. 2. In vitro studies on monoamine uptake inhibition and uptake impairment. Acta Physiologica Scandinavica. Supplementum, 429, 29–60.

    CAS  PubMed  Google Scholar 

  • Blasig, J., Reinhold, K., & Herz, A. (1973). Effect of 6-hydroxydopamine, 5,6-dihydroxytryptamine and raphe lesions on the antinociceptive actions of morphine in rats. Psychopharmacologia, 31(2), 111–119.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., & Cooper, B. R. (1975). Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Research, 98(3), 517–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., & Mueller, R. A. (1978). Alterations in the neurocytotoxicity of 5,6-dihydroxytryptamine by pharmacologic agents in adult and developing rats. Annals of the New York Academy Sciences, 305, 160–170.

    CAS  Google Scholar 

  • Breese, G. R., Cooper, B. R., Grant, L. D., & Smith, R. D. (1974a). Biochemical and behavioural alterations following 5,6-dihydroxytryptamine administration into brain. Neuropharmacology, 13(3), 177–187.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Cooper, B. R., & Mueller, R. A. (1974b). Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine. British Journal of Pharmacology, 52(2), 307–314.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browning, R. A., Hoffman, W. E., & Simonton, R. L. (1978). Changes in seizure susceptibility after intracerebral treatment with 5,7-dihydroxytryptamine: role of serotonergic neurons. Annals of the New York Academy Sciences, 305, 437–456.

    CAS  Google Scholar 

  • Brus, R., Kostrzewa, R. M., Perry, K. W., & Fuller, R. W. (1994). Supersensitization of the oral response to SKF 38393 in neonatal 6-hydroxydopamine-lesioned rats is eliminated by neonatal 5,7-dihydroxytryptamine treatment. Journal of Pharmacol and Experimental Therapeutics, 268, 231–237.

    CAS  Google Scholar 

  • Brus, R., Plech, A., & Kostrzewa, R. M. (1995). Enhanced quinpirole response in rats lesioned neonatally with 5,7-dihydroxytryptamine. Pharmacology Biochemistry and Behavior, 50, 649–653.

    CAS  Google Scholar 

  • Brus, R., Nowak, P., Szkilnik, R., Mikolajun, U., & Kostrzewa, R. M. (2004). Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotoxicity Research, 6, 317–325.

    PubMed  Google Scholar 

  • Carlton, P. L., & Advokat, C. (1973). Attenuated habituation due to parachlorophenylalanine. Pharmacology Biochemistry and Behavior, 1(6), 657–663.

    CAS  Google Scholar 

  • Carter, C. J., & Pycock, C. J. (1981). The role of 5-hydroxytryptamine in dopamine-dependent stereotyped behaviour. Neuropharmacology, 20(3), 261–265.

    CAS  PubMed  Google Scholar 

  • Cassaday, H. J., Norman, C., Shilliam, C. S., Vincent, C., & Marsden, C. A. (2003). Intraventricular 5,7-dihydroxytryptamine lesions disrupt acquisition of working memory task rules but not performance once learned. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(1), 147–156.

    CAS  Google Scholar 

  • Chen, G., Ensor, C. R., & Bohner, B. (1954). A facilitation action of reserpine on the central nervous system. Proceedings of the Society for Experimental Biology and Medicine, 86(3), 507–510.

    CAS  PubMed  Google Scholar 

  • Ciobica, A., Hritcu, L., Padurariu, M., Dobrin, R., & Bild, V. (2010). Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: Relevance for anxiety and affective disorders. Advances in Medical Sciences, 55(2), 289–296.

    CAS  PubMed  Google Scholar 

  • Clemens, J. A. (1978). Effects of serotonin neurotoxins on pituitary hormone release. Annals of the New York Academy of Sciences, 305, 399–410.

    CAS  PubMed  Google Scholar 

  • Cohen, G., & Heikkila, R. E. (1978). Mechanisms of action of hydroxylated phenylethylamine and indoleamine neurotoxins. Annals of the New York Academy of Sciences, 305, 74–84.

    CAS  PubMed  Google Scholar 

  • Collu, R. (1978). Endocrine effects of brain serotonin depletion by 5,6-dihydroxytryptamine in prepubertal male rats. Annals of the New York Academy of Sciences, 305, 411–422.

    CAS  PubMed  Google Scholar 

  • Da Prada, M., Carruba, M., O'Brien, R. A., Saner, A., & Pletscher, A. (1972). The effect of 5,6-dihydroxytryptamine on sexual behaviour of male rats. European Journal of Pharmacology, 19(2), 288–290.

    PubMed  Google Scholar 

  • Da Prada, M., Pieri, L., Keller, H., Pieri, M., & Bonetti, E. P. (1978). Effects of 5,6-dihydroxytryptamine and 5,7-dihydroxytryptamine on the rat central nervous system after intraventricular or intracerebral application and on blood platelets in vitro. Annals of the New York Academy of Sciences, 305, 595–620.

    PubMed  Google Scholar 

  • Daly, J., Fuxe, K., & Jonsson, G. (1973). Effects of intracerebral injections of 5,6-dihydroxytryptamine on central monoamine neurons: Evidence for selective degeneration of central 5-hydroxytryptamine neurons. Brain Research, 49(2), 476–482.

    CAS  PubMed  Google Scholar 

  • Davis, M., & Sheard, M. H. (1974). Habituation and sensitization of the rat startle response: Effects of raphe lesions. Physiology and Behavior, 12(3), 425–431.

    CAS  PubMed  Google Scholar 

  • Eichelman, B. S., Jr., & Thoa, N. B. (1973). The aggressive monoamines. Biological Psychiatry, 6(2), 143–164.

    CAS  PubMed  Google Scholar 

  • Feldberg, W., & Myers, R. D. (1963). A new concept of temperature regulation by amines in the hypothalamus. Nature, 200, 1325.

    CAS  PubMed  Google Scholar 

  • Finger, S., & Almli, C. R. (1985). Brain damage and neuroplasticity: Mechanisms of recovery or development? Brain Research, 357(3), 177–186.

    CAS  PubMed  Google Scholar 

  • Fletcher, P. J., Selhi, Z. F., Azampanah, A., & Sills, T. L. (2001). Reduced brain serotonin activity disrupts prepulse inhibition of the acoustic startle reflex: Effects of 5,7-dihydroxytryptamine and p-chlorophenylalanine. Neuropsychopharmacology, 24(4), 399–409.

    CAS  PubMed  Google Scholar 

  • Genovese, E., Zonta, N., & Mantegazza, P. (1973). Decreased antinociceptive activity of morphine in rats pretreated intraventricularly with 5,6-dihydroxytryptamine, a long-lasting selective depletor of brain serotonin. Psychopharmacologia, 32(4), 359–364.

    CAS  PubMed  Google Scholar 

  • Gershanik, O. S., Heikkila, R. E., & Duvoisin, R. C. (1979). Asymmetric action of intraventricular monoamine neurotoxins. Brain Research, 174(2), 345–350.

    CAS  PubMed  Google Scholar 

  • Geyer, M. A., Puerto, A., Menkes, D. B., Segal, D. S., & Mandell, A. J. (1976). Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways. Brain Research, 106(2), 257–269.

    CAS  PubMed  Google Scholar 

  • Gil-ad, I., Zambotti, F., Carruba, M. O., Vicentini, L., & Muller, E. E. (1976). Stimulatory role for brain serotoninergic system on prolactin secretion in the male rat. Proceedings of the Society for Experimental Biology and Medicine, 151(3), 512–518.

    CAS  PubMed  Google Scholar 

  • Glick, S. D. (1974). Changes in drug sensitivity of mechanism of functional recovery following brain damage. In D. G. Stein, J. J. Rosen, & N. Butters (Eds.), Plasticity and recovery of function in the central nervous system (pp. 339–372). New York: Academic.

    Google Scholar 

  • Graham, F. K. (1975). Presidential Address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology, 12(3), 238–248.

    CAS  PubMed  Google Scholar 

  • Halliwell, B. (1992). Reactive oxygen species and the central nervous system. Journal of Neurochemistry, 59(5), 1609–1623.

    CAS  PubMed  Google Scholar 

  • Harvey, J. A., Schlosberg, A. J., & Yunger, L. M. (1974). Effect of p-chlorophenylalanine and brain lesions on pain sensitivity and morphine analgesia in the rat. Advances in Biochemical Psychopharmacology, 10, 233–245.

    CAS  PubMed  Google Scholar 

  • Hedreen, J. (1975). Increased nonspecific damage after lateral ventricle injection of 6-OHDA compared with fourth ventricle injection in rat brain. In G. Jonnson, T. Malmfors, & C. H. Sachs (Eds.), Chemical tools in catecholamine research (pp. 91–100). Amsterdam/North-Holland/New York: American Elsevier.

    Google Scholar 

  • Hole, K., & Lorens, S. A. (1975). Response to electric shock in rats: Effects of selective midbrain raphe lesions. Pharmacology Biochemistry and Behavior, 3(1), 95–102.

    CAS  Google Scholar 

  • Hollister, A. S., Breese, G. R., Kuhn, C. M., Cooper, B. R., & Schanberg, S. M. (1976). An inhibitory role for brain serotonin-containing systems in the locomotor effects of d-amphetamine. Journal of Pharmacol and Experimental Therapeutics, 198(1), 12–22.

    CAS  Google Scholar 

  • Hritcu, L., Clicinschi, M., & Nabeshima, T. (2007). Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiology and Behavior, 91(5), 652–657.

    CAS  PubMed  Google Scholar 

  • Jacobs, B. L. (1976). An animal behavior model for studying central serotonergic synapses. Life Sciences, 19(6), 777–785.

    CAS  PubMed  Google Scholar 

  • Jacobs, B. L., & Klemfuss, H. (1975). Brain stem and spinal cord mediation of a serotonergic behavioral syndrome. Brain Research, 100(2), 450–457.

    CAS  PubMed  Google Scholar 

  • Jacoby, J. A., & Lytle, L. D. (1978). Serotonin neurotoxins. Annals of the New York Academy of Sciences, 305, 1–665.

    Google Scholar 

  • Jonsson, G., Pollare, H., Hallman, H., & Sachs, C. (1978). Developmental plasticity of central serotonin neurons after 5,7-dihydrotryptamine treatment. Annals of the New York Academy of Sciences, 305, 328–345.

    CAS  PubMed  Google Scholar 

  • Jośko, J., Drab, J., Jochem, J., Nowak, P., Szkilnik, R., Korossy-Mruk, E., Boroń, D., Kostrzewa, R. M., Brus, H., & Brus, R. (2011). Ontogenetic serotoninergic lesioning alters histaminergic activity in rats in adulthood. Neurotoxicity Research, 20, 103–108.

    PubMed  Google Scholar 

  • Jouvet, M. (1969). Biogenic amines and the states of sleep. Science, 163(3862), 32–41.

    CAS  PubMed  Google Scholar 

  • Jouvet, M. (1972). The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiology, 64, 166–307.

    CAS  Google Scholar 

  • Jouvet, M., & Pujol, J. F. (1974). Effects of central alterations of serotoninergic neurons upon the sleep-waking cycle. Advances in Biochemical Psychopharmacology, 11, 199–209.

    CAS  PubMed  Google Scholar 

  • Kadlubar, F. F., Morton, K. C., & Ziegler, D. M. (1973). Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines. Biochemical and Biophysical Research Communications, 54(4), 1255–1261.

    CAS  PubMed  Google Scholar 

  • Kappus, H. (1986). Overview of enzyme systems involved in bio-reduction of drugs and in redox cycling. Biochemical Pharmacology, 35(1), 1–6.

    CAS  PubMed  Google Scholar 

  • Klemm, H. P., Baumgarten, H. G., & Schlossberger, H. G. (1980). Polarographic measurements of spontaneous and mitochondria-promoted oxidation of 5,6- and 5,7-dihydroxytryptamine. Journal of Neurochemistry, 35(6), 1400–1408.

    CAS  PubMed  Google Scholar 

  • Kołomańska, P., Wyszogrodzka, E., Rok-Bujko, P., Krząścik, P., Kostowski, W., Zaniewska, M., et al. (2011). Neonatal serotonin (5-HT) depletion does not disrupt prepulse inhibition of the startle response in rats. Pharmacological Reports, 63(5), 1077–1084.

    PubMed  Google Scholar 

  • Kostrzewa, R. M., Brus, R., Kalbfleisch, J. H., Perry, K. W., & Fuller, R. W. (1994). Proposed animal model of attention deficit hyperactivity disorder. Brain Research Bulletin, 34, 161–167.

    CAS  PubMed  Google Scholar 

  • Kusljic, S., Copolov, D. L., & van den Buuse, M. (2003). Differential role of serotonergic projections arising from the dorsal and median raphe nuclei in locomotor hyperactivity and prepulse inhibition. Neuropsychopharmacology, 28(12), 2138–2147.

    CAS  PubMed  Google Scholar 

  • Ladosky, W., & Noronha, J. G. (1974). Further evidence for an inhibitory role of serotonin in the control of ovulation. Journal of Endocrinology, 62(3), 677–678.

    CAS  PubMed  Google Scholar 

  • Lidov, H. G., & Molliver, M. E. (1982). An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields. Brain Research Bulletin, 8(4), 389–430.

    CAS  PubMed  Google Scholar 

  • Lieben, C. K., Steinbusch, H. W., & Blokland, A. (2006). 5,7-DHT lesion of the dorsal raphe nuclei impairs object recognition but not affective behavior and corticosterone response to stressor in the rat. Behavioural Brain Research, 168(2), 197–207.

    PubMed  Google Scholar 

  • Lipton, S. A., & Kater, S. B. (1989). Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends in Neurosciences, 12(7), 265–270.

    CAS  PubMed  Google Scholar 

  • Lorens, S. A. (1978). Some behavioral effects of serotonin depletion depend on method: A comparison of 5,7-dihydroxytryptamine, p-chlorophenylalanine, p-chloroamphetamine, and electrolytic raphe lesions. Annals of the New York Academy of Sciences, 305, 532–555.

    CAS  PubMed  Google Scholar 

  • Lyness, W. H., & Moore, K. E. (1981). Destruction of 5-hydroxytryptaminergic neurons and the dynamics of dopamine in nucleus accumbens septi and other forebrain regions of the rat. Neuropharmacology, 20(4), 327–334.

    CAS  PubMed  Google Scholar 

  • Mackenzie, R. G., Hoebel, B. G., Norelli, H. C., & Trulson, M. E. (1978). Increased tilt-cage activity after serotonin depletion by 5,7-dihydroxytryptamine. Neuropharmacology, 17(11), 957–963.

    CAS  PubMed  Google Scholar 

  • Massotti, M., Scotti de Carolis, A., & Longo, V. G. (1974). Effects of three dihydroxylated derivatives of tryptamine on the behavior and on brain amine content in mice. Pharmacology Biochemistry and Behavior, 2(6), 769–776.

    CAS  Google Scholar 

  • Melchior, C. L., & Myers, R. D. (1976). Genetic differences in ethanol drinking of the rat following injection of 6-OHDA, 5,6-DHT or 5,7-DHT into the cerebral ventricles. Pharmacology Biochemistry and Behavior, 5(1), 63–72.

    CAS  Google Scholar 

  • Messing, R. B., & Lytle, L. D. (1977). Serotonin-containing neurons: Their possible role in pain and analgesia. Pain, 4(1), 1–21.

    CAS  PubMed  Google Scholar 

  • Meyerson, B. J. (1964). The effect of neuropharmacological agents on hormone-activated estrus behaviour in ovariectomised rats. Archives Internationales de Pharmacodynamie et de Therapie, 150, 4–33.

    CAS  PubMed  Google Scholar 

  • Meyerson, B. J. (1966). Oestrous behaviour in oestrogen treated ovariectomized rats after chlorpromazine alone or in combination with progesterone, tetrabenazine or reserpine. Acta Pharmacologica et Toxicologica (Copenh), 24(4), 363–376.

    CAS  Google Scholar 

  • Myers, R. D. (1975). Impairment of thermoregulation, food and water intakes in the rat after hypothalamic injections of 5,6-dihydroxytryptamine. Brain Research, 94(3), 491–506.

    CAS  PubMed  Google Scholar 

  • Myers, R. D. (1978). Hypothalamic actions of 5-hydroxytryptamine neurotoxins: Feeding, drinking and body temperature. Annals of New York Academy of Sciences, 305, 556–575.

    CAS  Google Scholar 

  • Nowak, P., Bortel, A., Dabrowska, J., Oswiecimska, J., Drosik, M., Kwiecinski, A., Opara, J., Kostrzewa, R. M., & Brus, R. (2007). Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotoxicity Research, 11, 131–144.

    CAS  PubMed  Google Scholar 

  • Nowak, P., Nitka, D., Kwieciński, A., Jośko, J., Drab, J., Pojda-Wilczek, D., Kasperski, J., Kostrzewa, R. M., & Brus, R. (2009). Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists. Pharmacological Reports, 61, 311–318.

    CAS  PubMed  Google Scholar 

  • Piechal, A., Blecharz-Klin, K., Wyszogrodzka, E., Kolomanska, P., Rok-Bujko, P., Krzascik, P., et al. (2012). Neonatal serotonin (5-HT) depletion does not affect spatial learning and memory in rats. Pharmacological Reports, 64(2), 266–274.

    CAS  PubMed  Google Scholar 

  • Pranzatelli, M. R., & Snodgrass, S. R. (1986a). Motor habituation in the DHT model: Bin analysis of daytime and nocturnal locomotor activity. Pharmacology Biochemistry and Behavior, 24(6), 1679–1686.

    CAS  Google Scholar 

  • Pranzatelli, M. R., & Snodgrass, S. R. (1986b). Serotonin-lesion myoclonic syndromes. II. Analysis of individual syndrome elements, locomotor activity and behavioral correlations. Brain Research, 364(1), 67–76.

    CAS  PubMed  Google Scholar 

  • Pranzatelli, M. R., Huang, Y. Y., Dollison, A. M., & Stanley, M. (1989). Brainstem serotonergic hyperinnervation modifies behavioral supersensitivity to 5-hydroxytryptophan in the rat. Brain Research. Developmental Brain Research, 50(1), 89–99.

    CAS  PubMed  Google Scholar 

  • Pujol, J. F., Keane, P., Bobillier, P., Renaud, B., & Jouvet, M. (1978). 5,6-Dihyhydroxytryptamine as a tool for studying sleep mechanisms and interactions between monoaminergic systems. Annals of New York Academy of Sciences, 305, 576–589.

    CAS  Google Scholar 

  • Ricaurte, G. A., Markowska, A. L., Wenk, G. L., Hatzidimitriou, G., Wlos, J., & Olton, D. S. (1993). 3,4-Methylenedioxymethamphetamine, serotonin and memory. Journal of Pharmacol and Experimental Therapeutics, 266(2), 1097–1105.

    CAS  Google Scholar 

  • Rodriguez, F. D., & Rodriguez, R. E. (1989). Intrathecal administration of 5,6-DHT or 5,7-DHT reduces morphine and substance P-antinociceptive activity in the rat. Neuropeptides, 13(2), 139–146.

    CAS  PubMed  Google Scholar 

  • Rok-Bujko, P., Krzascik, P., Szyndler, J., Kostowski, W., & Stefanski, R. (2012). The influence of neonatal serotonin depletion on emotional and exploratory behaviours in rats. Behavioural Brain Research, 226(1), 87–95.

    CAS  PubMed  Google Scholar 

  • Ross, C. A., Trulson, M. E., & Jacobs, B. L. (1976). Depletion of brain serotonin following intraventricular 5,7-dihydroxytryptamine fails to disrupt sleep in the rat. Brain Research, 114(3), 517–523.

    CAS  PubMed  Google Scholar 

  • Rotman, A., Daly, J. W., & Creveling, C. R. (1976). Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: A model for cytotoxicity. Molecular Pharmacology, 12(6), 887–899.

    CAS  PubMed  Google Scholar 

  • Sachs, C., & Jonsson, G. (1975). 5,7-Dihydroxytryptamine induced changes in the postnatal development of central 5-hydroxytryptamine neurons. Medical Biology, 53(3), 156–164.

    CAS  PubMed  Google Scholar 

  • Saller, C. F., & Stricker, E. M. (1976). Hyperphagia and increased growth in rats after intraventricular injection of 5,7-dihydroxytryptamine. Science, 192(4237), 385–387.

    CAS  PubMed  Google Scholar 

  • Sawyer, D. T., Gibian, M. J., Morrison, M. M., & Seo, E. T. (1978). Chemical reactivity of superoxide ion. Journal of the American Chemical Society, 100(2), 627–628.

    CAS  Google Scholar 

  • Schlossberger, H. G. (1978). Synthesis and chemical properties of some indole derivatives. Annals of New York Academy of Sciences, 305, 25–35.

    CAS  Google Scholar 

  • Sewell, R. D., & Spencer, P. S. (1974). Proceedings: Modification of the antinociceptive activity of narcotic agonists and antagonists by intraventricular injection of biogenic amines in mice. British Journal of Pharmacology, 51(1), 140–141.

    Google Scholar 

  • Singh, S., & Dryhurst, G. (1990). Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine. Journal of Medicinal Chemistry, 33(11), 3035–3044.

    CAS  PubMed  Google Scholar 

  • Sinhababu, A. K., Ghosh, A. K., & Borchardt, R. T. (1985). Molecular mechanism of action of 5,6-dihydroxytryptamine. Synthesis and biological evaluation of 4-methyl-, 7-methyl-, and 4,7-dimethyl-5,6-dihydroxytryptamines. Journal of Medicinal Chemistry, 28(9), 1273–1279.

    CAS  PubMed  Google Scholar 

  • Smith, R. D., Cooper, B. R., & Breese, G. R. (1973). Growth and behavioral changes in developing rats treated intracisternally with 6-hydroxydopamine: Evidence for involvement of brain dopamine. Journal of Pharmacol and Experimental Therapeutics, 185(3), 609–619.

    CAS  Google Scholar 

  • Stewart, R. M., Growdon, J. H., Cancian, D., & Baldessarini, R. J. (1976). Myoclonus after 5-hydroxytryptophan in rats with lesions of indoleamine neurons in the central nervous system. Neurology, 26(7), 690–692.

    CAS  PubMed  Google Scholar 

  • Stewart, R. M., Campbell, A., Sperk, G., & Baldessarini, R. J. (1979). Receptor mechanisms in increased sensitivity to serotonin agonists after dihydroxytryptamine shown by electronic monitoring of muscle twitches in the rat. Psychopharmacology, 60(3), 281–289.

    CAS  PubMed  Google Scholar 

  • Tabatabaie, T., & Dryhurst, G. (1992). Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: Mechanistic insights. Journal of Medicinal Chemistry, 35(12), 2261–2274.

    CAS  PubMed  Google Scholar 

  • Tabatabaie, T., & Dryhurst, G. (1998). Molecular mechanisms of action of 5,6- and 5,7-dihydroxytryptamine. In R. M. Kostrzewa (Ed.), Highly selective neurotoxins: Basic and clinical applications (pp. 269–291). Totowa: Humana Press.

    Google Scholar 

  • Tabatabaie, T., Wrona, M. Z., & Dryhurst, G. (1990). Autoxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine. Journal of Medicinal Chemistry, 33(2), 667–672.

    CAS  PubMed  Google Scholar 

  • Tabatabaie, T., Goyal, R. N., Blank, C. L., & Dryhurst, G. (1993). Further insights into the molecular mechanisms of action of the serotonergic neurotoxin 5,7-dihydroxytryptamine. Journal of Medicinal Chemistry, 36(2), 229–236.

    CAS  PubMed  Google Scholar 

  • Tenen, S. S. (1968). Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor. Psychopharmacologia, 12(4), 278–285.

    CAS  PubMed  Google Scholar 

  • Thoenen, H., & Tranzer, J. P. (1968). Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 261(3), 271–288.

    CAS  PubMed  Google Scholar 

  • Trindade-Filho EM, de Castro-Neto EF, de A Carvalho R, Lima E, Scorza FA, Amado D, et al. (2008). Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Research, 82(2–3), 194–199.

    CAS  PubMed  Google Scholar 

  • Vitalis, T., & Parnavelas, J. G. (2003). The role of serotonin in early cortical development. Developmental Neuroscience, 25(2–4), 245–256.

    CAS  PubMed  Google Scholar 

  • Volpe, B. T., Hendrix, C. S., Park, D. H., Towle, A. C., & Davis, H. P. (1992). Early post-natal administration of 5,7-dihydroxytryptamine destroys 5-HT neurons but does not affect spatial memory. Brain Research, 589(2), 262–267.

    CAS  PubMed  Google Scholar 

  • Waller, M. B., & Myers, R. D. (1974). Similar actions of intra-hypothalamic 5,6-DHT and 5-HT in evoking hyperthermia in the monkey. Research Communications in Chemical Pathology and Pharmacology, 9(3), 421–429.

    CAS  PubMed  Google Scholar 

  • Wirth, S., Lehmann, O., Bertrand, F., Lazarus, C., Jeltsch, H., & Cassel, J. C. (2000). Preserved olfactory short-term memory after combined cholinergic and serotonergic lesions using 192 IgG-saporin and 5,7-dihydroxytryptamine in rats. NeuroReport, 11(2), 347–350.

    CAS  PubMed  Google Scholar 

  • Wuttke, W., Bjorklund, A., Baumgarten, H. G., Lachenmayer, L., Fenske, M., & Klemm, H. P. (1977). De- and regeneration of brain serotonin neurons following 5,7-dihydroxytryptamine treatment: Effects on serum LH, FSH and prolactin levels in male rats. Brain Research, 134(2), 317–331.

    CAS  PubMed  Google Scholar 

  • Wuttke, W., Hancke, J. L., Höhn, K. G. & Baumgarten, H. G. (1978). Effect of intraventricular injection of 5,7-dihydroxytryptamine on serum gonadotropins and prolactin. Annals of the New York Academy of Sciences, 305: 423–436. doi: 10.1111/j.1749-6632.1978.tb31539.x.

    CAS  PubMed  Google Scholar 

  • Yan, W., Wilson, C. C., & Haring, J. H. (1997). Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Research. Developmental Brain Research, 98(2), 177–184.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Stefański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Paterak, J., Stefański, R. (2014). 5,6- and 5,7-Dihydroxytryptamines as Serotoninergic Neurotoxins. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_76

Download citation

Publish with us

Policies and ethics