Skip to main content
Log in

Indirect flow-injection determination of ascorbic acid by flame atomic absorption spectrometry

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A continuous-flow procedure is proposed for the indirect determination of ascorbic acid, based on its reducing properties because of the oxidation of its 1,2-enediol group. Iron(III) was injected into a 1,10-phenanthroline stream, which was mixed with a sample carrier and then with a sodium picrate solution stream. In these conditions the iron(III) was reduced to iron(II) by the ascorbic acid. Thus, the iron(II) formed reacts with 1,10-phenanthroline to form a charged red complex, which with picrate ion forms a stable red-orange uncharged ion-association complex that is adsorbed “on-line” on a non-ionic polymeric adsorbent (Amberlite XAD-4), proportionally to the ascorbic acid in the sample. The unadsorbed iron was determined by flame atomic absorption spectrometry. The proposed method allows the determination of ascorbic acid in the range 0.5–25 μg ml−1 with a relative standard deviation of 2.9% at a rate of ca. 90 samples h−1. This method has been applied to the determination of ascorbic acid in pharmaceutical preparations, fruit juices and sweets. The results obtained in the analysis are compared with those provided by the 2,6-dichloroindophenol method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Pachla, D. L. Reynolds, P. T. Kissinger,J. Assoc. Off. Anal. Chem. 1985,68, 1.

    Google Scholar 

  2. S. M. Sultan, E. Bishop,J. Pharm. Biomed. Anal. 1990,8, 345.

    Google Scholar 

  3. P. W. Washko, R. W. Welch, K. R. Dhariwal, Y. Wang, M. Levine,Anal. Biochem. 1992,204, 1.

    Google Scholar 

  4. S. M. Sultan,Talanta 1993,40, 593.

    Google Scholar 

  5. Y. Liu,Huaxue Shiji 1994,16, 282.

    Google Scholar 

  6. K. K. Verma, A. Jain, R. Rawat,J. Assoc. Off. Anal. Chem. 1984,67, 262.

    Google Scholar 

  7. S. H. R. Davies, S. J. Masten,Anal. Chim. Acta 1991,248, 225.

    Google Scholar 

  8. S. Z. Qureshi, A. Saeed, S. Haque, M. A. Khan,Talanta 1991,38, 637.

    Google Scholar 

  9. A. Rahman, S. Hanif, S. Rahman,Pak. J. Sci. 1994,46, 33.

    Google Scholar 

  10. I. A. Nicolson, R. Macrae, D. P. Richardson,Analyst 1984,109, 267.

    Google Scholar 

  11. H. Iwase, I. Ono,J. Chromatogr. 1993,654, 215.

    Google Scholar 

  12. F. Tsumura, Y. Ohsako, Y. Haraguchi, H. Kumagai, H. Sakurai, K. Ishii,J. Food Sci. 1993,58, 619.

    Google Scholar 

  13. H. K. Chung, J. D. Ingle,Anal. Chim. Acta 1991,243, 89.

    Google Scholar 

  14. H. P. Huang, R. X. Cai, Y. M. Du, Y. E. Zeng,Chin. Chem. Lett. 1995,6, 235.

    Google Scholar 

  15. S. Uchiyama, Y. Kobayashi, S. Suzuki,Anal. Chem. 1991,63, 2259.

    Google Scholar 

  16. Z. Gao, B. S. Chen, M. X. Zi,J. Electroanal. Chem. 1994,365, 197.

    Google Scholar 

  17. K. Sato, Y. Chiba, S. Tanaka,Anal. Chim. Acta 1993,277, 61.

    Google Scholar 

  18. L. Wang, Ch. Zhu, G. Yang, J. Wu, H. Tong, S. Zhang,Fenxi Huaxue 1995,23, 83.

    Google Scholar 

  19. H. K. Chung, J. D. Ingle,Anal. Chim. Acta 1991,243, 89.

    Google Scholar 

  20. M. Chiara, M. Nesi, G. Carrea, P. G. Righetti,J. Chromatogr. 1993,645, 197.

    Google Scholar 

  21. C. T. Wang, W. T. Chang, C. W. Huang, T. C. Pan, T. M. Pan, R. T. Wang,Jpn. J. Toxicol. Environ. Health 1994,40, 197.

    Google Scholar 

  22. Y. Kidani, R. Umemoto, K. Inagaki,Mikrochim. Acta 1981,II, 329.

    Google Scholar 

  23. Y. S. Fung, S.Y. Mo,Anal Chim. Acta 1992,261, 375.

    Google Scholar 

  24. S. M. Sultan,Talanta 1993,40, 593.

    Google Scholar 

  25. T. Pérez-Ruíz, C. Martinez-Lozano, A. Sanz,Anal. Chim. Acta 1995,308, 299.

    Google Scholar 

  26. F. Lázaro, A. Rios, M. D. Luque de Castro, M. Valcárcel,Analyst 1986,111, 163.

    Google Scholar 

  27. F. Lázaro, A. Rios, M. D. Luque de Castro, M. Valcárcel,Analyst 1986,111, 167.

    Google Scholar 

  28. F. Lázaro, M. D. Luque de Castro, M. Valcárcel,Analusis 1987,15, 183.

    Google Scholar 

  29. L. E. León, J. Catapano,Anal. Lett. 1993,26, 1741.

    Google Scholar 

  30. S. M. Sultan, A. M. Abdennabi, F. E. O. Suliman,Talanta 1994,41, 125.

    Google Scholar 

  31. A. Kojlo, E. Kleszczewska, H. Puzanowska-Tarasiewicz,Acta Pol. Pharm. 1994,51, 293.

    Google Scholar 

  32. A. Jain, A. Chaurasia, K. K. Verma,Talanta 1995,42, 779.

    Google Scholar 

  33. H. Huang, R. Cai, Y. Du, Y. Zeng,Anal. Chim. Acta 1995,309, 271.

    Google Scholar 

  34. H. Fadrus, J. Maly,Anal. Chim. Acta 1975,77, 315.

    Google Scholar 

  35. A. Morales, M. I. Toral,Analyst 1985,110, 1445.

    Google Scholar 

  36. Official Methods of Analysis of the Association of Official Analytical Chemists, AOAC, 13th Ed., Washington, DC, 1980, pp. 746.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Carmen Yebra-Biurrun, M., Cespón-Romero, R.M. & Bermejo-Barrera, P. Indirect flow-injection determination of ascorbic acid by flame atomic absorption spectrometry. Mikrochim Acta 126, 53–58 (1997). https://doi.org/10.1007/BF01242660

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01242660

Key words

Navigation