Skip to main content
Log in

Altruism, tit for tat and ‘outlaw’ genes

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

In a prior study we combined game theory and inclusive fitness models to examine whether the guarded altruism that can evolve among non-relatives (tit for tat, TFT) might also evolve among close relatives, supplanting unconditional altruism. In most cases, TFT replaced unconditional altruism in family-structured models. Even when TFT is selected at a single locus, however, by withholding altruism from non-reciprocating relatives it may qualify as an ‘outlaw’ from the standpoint of modifier genes at other loci. Here we examine this possibility with a series of haploid, two-locus models in which a modifier gene transforms TFT into unconditional altruism. The modifier allele spreads to fixation whenever Hamilton's Rule is satisfied, resulting in an unconditional altruist replacing the TFT strategy. As such, TFT may be regarded as an outlaw vulnerable to suppression by alleles at other loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R. and Borgia, G. (1978) Group selection, altruism and the levels of organization of life.Ann. Rev. Ecol. System. 9, 449–75.

    Google Scholar 

  • Aoki, K. (1983) A quantitative genetic model of reciprocal altruism: a condition for kin or group selection to prevail.Proc. Natl Acad. Sci. USA 80, 4065–8.

    PubMed  Google Scholar 

  • Axelrod, R. and Hamilton, W.D. (1981) The evolution of cooperation.Science 211, 1390–6.

    PubMed  Google Scholar 

  • Axelrod, R. and Dion, D. (1988) The further evolution of cooperation.Science 242, 1385–90.

    Google Scholar 

  • Boyd, R. (1988) Is the repeated Prisoner's Dilemma a good model of reciprocal altruism?Ethol. Sociobiol. 9, 211–22.

    Google Scholar 

  • Boyd, R. and Richerson, P. (1988) The evolution of reciprocity in sizable groups.J. Theor. Biol. 132, 337–56.

    PubMed  Google Scholar 

  • Cosmides, L. and Tooby, J. (1981) Cytoplasmic inheritance and intragenomic conflict.J. Theor. Biol. 89, 83–129.

    PubMed  Google Scholar 

  • Dawkins, R. (1982)The Extended Phenotype. Oxford University Press, Oxford.

    Google Scholar 

  • Dugatkin, L.A. (1990)N-person games and the evolution of cooperation: a model based on predator inspection behavior in fish.J. Theor. Biol. 142, 123–35.

    PubMed  Google Scholar 

  • Dugatkin, L.A. and Wilson, D.S. (1991) ROVER: a strategy for exploiting cooperators in a patchy environment.Am. Nat. 138, 687–701.

    Google Scholar 

  • Feldman, M.W. and Thomas, E.E. (1987) Behavior-dependent contexts for repeated plays of the Prisoner's Dilemma II: dynamical aspects of the evolution of cooperation.J. Theor. Biol. 128, 297–315.

    PubMed  Google Scholar 

  • Fisher, E. (1988) Simultaneous hermaphroditism, tit-for tat, and the evolutionary stability of social systems.Ethol. Sociobiol. 9, 119–36.

    Google Scholar 

  • Gadagker, R. (1985) Kin recognition in social insects and other animals — a review of recent findings and a consideration of their relevance for the theory of kin selection.Proc. Indian Acad. Sci. 94, 587–621.

    Google Scholar 

  • Grafen, A. (1984) Natural selection, kin selection and group selection. InBehavioural ecology: an evolutionary approach (J.R. Krebs and N.B. Davies, eds), pp. 62–84. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hamilton, W.D. (1964) The genetical evolution of social behaviour. I and II.J. Theor. Biol. 7, 1–52.

    PubMed  Google Scholar 

  • Maynard Smith, J. and Price, G. (1973) The logic of animal conflict.Nature 246, 15–18.

    Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the theory of games. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mesterton-Gibbons, M. and Dugatkin, L.A. (1992) Cooperation among unrelated individuals: evolutionary factors.Q. Rev. Biol. 67, 267–81

    Google Scholar 

  • Michod, R. and Sanderson, M. (1985) Behavioral structure and the evolution of cooperation. InEvolution — essays in honor of John Maynard Smith (J. Greenwood and M. Slatkin, eds), pp. 95–104. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nowak, M.A. and May, R. (1992) Evolutionary games and spatial chaos.Nature 359, 826–9.

    Google Scholar 

  • Nowak, M. and Sigmund, K. (1992) Tit for tat in heterogeneous populations.Nature 355, 250–3.

    Google Scholar 

  • Ridley, M. and Grafen, A. (1981) Are green beard genes outlaws?Anim. Behav. 29, 954–5.

    Google Scholar 

  • Strassmann, J. (1989) Altruism and relatedness at colony foundation in social insects.Trends Evol. Ecol. 4 371–4.

    Google Scholar 

  • Trivers, R. (1985)Social Evolution. Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Wilson, D.S. and Dugatkin, L.A. (1991) Nepotism vs TFT or why should you be nice to your rotten brother?Evol. Ecol. 5, 291–9.

    Google Scholar 

  • Wilson, D.S., Pollock, G. and Dugatkin, L.A. (1992) Can altruism evolve in truly viscous populations?Evol. Ecol 6, 331–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugatkin, L.A., Wilson, D.S., Farrand, L. et al. Altruism, tit for tat and ‘outlaw’ genes. Evol Ecol 8, 431–437 (1994). https://doi.org/10.1007/BF01238193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238193

Keywords

Navigation