Skip to main content
Log in

The inner plexiform layer in the retina of the cat: electron microscopic observations

  • Published:
Journal of Neurocytology

Summary

Neural connections of cells ramifying in the inner plexiform layer of the cat retina have been studied by serial section electron microscopy. Flat cone bipolars and invaginating cone bipolars segregate their axon terminals to different sublaminae of the IPL (sublaminaa and sublaminab, respectively) where they relate to different subtypes of the same class of ganglion cell (a andb types respectively).

Rod bipolar axon terminals end solely in sublaminab and synapse with amacrine cells (AI and AII). AI provides reciprocal synapses to clusters of rod bipolar axon terminals. The AII amacrine provides rod input toa type ganglion cells by means of chemical synapses and tob type ganglion cells through gap junctions with invaginating cone bipolar terminals.

Amacrine cells exist which interconnect rod and cone bipolars, but some amacrines appear to be related specifically to neurons branching in particular sublaminae. Both large- and small-bodied ganglion cells have amacrine-dominated input while the medium-bodied ganglion cells with small dendritic trees have cone bipolar-dominated input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. A. (1969) The retinal bipolar cells and their synapses in the inner plexiform layer. InThe Retina: Morphology, Function and Clinical Characteristics, (edited byStraatsma, B. R. Hall, M. O., Allen, R. A. andCrescitelli, F.) pp. 101–143. Forum in Medical Sciences. No. 8. Berkeley: University California Press.

    Google Scholar 

  • Andrews, D. P. andHammond, P. (1970) Suprathreshold spectral properties of single optic tract fibres in cat, under mesopic adaptation: Cone-rod interaction.Journal of Physiology 209, 83–103.

    Google Scholar 

  • Boycott, B. B. andDowling, J. E. (1969) Organization of the primate retina: light microscopy.Philosophical Transactions of the Royal Society of London B255, 109–76.

    Google Scholar 

  • Boycott, B. B. andKolb, H. (1973) The connections between bipolar cells and photoreceptors in the retina of the domestic cat.Journal of Comparative Neurology 148, 91–114.

    Google Scholar 

  • Boycott, B. B. andWässle, H. (1974) The morphological types of ganglion cells of the domestic cat's retina.Journal of Physiology 240, 397–419.

    Google Scholar 

  • Brown, J. E. andMajor, D. (1966) Cat retinal ganglion cell dendritic fields.Experimental Neurology 15, 70–8.

    Google Scholar 

  • Cajal, S. R. (1892) As translated inThe structure of the Retina, (translated byThorpe, S. A. andGlickstein, M., 1972), Springfield, Illinois: Thomas.

    Google Scholar 

  • Chan, R. Y. andNaka, K-I. (1976) The amacrine cell.Vision Research 16, 1119–29.

    Google Scholar 

  • Cleland, B. G. andLevick, W. R. (1974) Properties of rarely encountered types of ganglion cells in the cat's retina and an overall classification.Journal of Physiology 240, 457–92.

    Google Scholar 

  • Daw, N. W. andPearlman, A. L. (1969) Cat colour vision: one cone process or several?Journal of Physiology 201, 745–64.

    Google Scholar 

  • Dowling, J. E. (1968) Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates.Proceedings of the Royal Society of London B170, 205–28.

    Google Scholar 

  • Dowling, J. E. (1970) Organization of vertebrate retinas.Investigative Ophthalmology 9, 655–80.

    Google Scholar 

  • Dowling, J. E. andBoycott, B. B. (1966) Organization of the primate retina: electron microscopy.Proceedings of the Royal Society of London B166, 80–111.

    Google Scholar 

  • Dowling, J. E. andEhinger, B. (1975) Synaptic organization of the interpiexiform cells of the goldfish retina.Science 188, 270–3.

    Google Scholar 

  • Dowling, J. E. andEhinger, B. (1978) Synaptic organization of the dopaminergic neurons in the rabbit retina.Journal of Comparative Neurology 180, 203–20.

    Google Scholar 

  • Dubin, M. W. (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopical analyais.Journal of Comparative Neurology 140, 479–506.

    Google Scholar 

  • Ehinger, B. (1976) Biogenic monoamines as transmitters in the retina. InTransmitters in the Visual Process (edited byBonting, S. L.)pp. 145–163. Oxford: Pergamon.

    Google Scholar 

  • Enroth-Cugell, C. andRobson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat.Journal of Physiology 187, 517–52.

    Google Scholar 

  • Famiglietti, E. V. andKolb, H. (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina.Brain Research 84, 293–300.

    Google Scholar 

  • Famiglietti, E. V. andKolb, H. (1976) Structural basis for ‘ON’- and ‘OFF’-center responses in retinal ganglion cells.Science 194, 193–5.

    Google Scholar 

  • Fisher, S. K. andBoycott, B. B. (1974) Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit.Proceedings of the Royal Society of London B186, 317–31.

    Google Scholar 

  • Gouras, P. (1968) Identification of cone mechanisms in monkey ganglion cells.Journal of Physiology 199, 533–47.

    Google Scholar 

  • Gouras, P. (1971) The function of the midget cell system in primate color vision.Vision Research Suppl.3, 397–410.

    Google Scholar 

  • Hochstein, S. andShapley, R. M. (1976) Linear and nonlinear spatial subunits in Y cat retinal ganglion cells.Journal of Physiology 262, 265–84.

    Google Scholar 

  • Hughes, H. (1975) A quantitative analysis of cat retina ganglion cell topography.Journal of Comparative Neurology 163, 107–28.

    Google Scholar 

  • Ikeda, H. andWright, M. J. (1972) Differential effects on refractive errors and receptive field organization of central and peripheral ganglion cells.Vision Research 12, 1465–76.

    Google Scholar 

  • Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina.Journal of Physiology 235, 133–53.

    Google Scholar 

  • Kidd, M. (1962) Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon.Journal of Anatomy (London) 96, 179–88.

    Google Scholar 

  • Kolb, H. (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells.Philosophical Transactions of the Royal Society of London B258, 263–83.

    Google Scholar 

  • Kolb, H. (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations.Journal of Neurocytology 6, 131–53.

    Google Scholar 

  • Kolb, H. andFamiglietti, E. V. (1974) Rod and cone pathways in the inner plexiform layer of cat retina.Science 186, 47–9.

    Google Scholar 

  • Kolb, H. andFamiglietti, E. V. (1976) Rod and cone pathways in the retina of the cat.Investigative Ophthalmology 15, 935–46.

    Google Scholar 

  • Kolb, H., Famiglietti, E.V. andNelson, R. (1976) Neural connections in the inner plexiform layer of the cat's retina. InThe Structure of the Eye III (edited byYamada, E. andMishima, S.) pp. 319–322. Japanese Journal of Ophthalmology.

  • Leicester, J. andStone, J. (1967) Ganglion, amacrine and horizontal cells of the cat's retina.Vision Research 7, 695–705.

    Google Scholar 

  • Marchiafava, P. L. andTorre, V. (1978) The responses of amacrine cells to light and intracellularly applied currents.Journal of Physiology 276, 83–102.

    Google Scholar 

  • Masland, R. H. andMills, J. W. (1978) Autoradiographic localization of acetylcholine in the rabbit retina.ARVO Abstracts, Supplement to Investigative Ophthalmology and Visual Science, April, 1978, p. 285.

  • Miller, R. F. andDacheux, R. F. (1976) Synaptic organization and ionic basis of ON and OFF channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells.Journal of General Physiology 67, 639–59.

    Google Scholar 

  • Missotten, L. (1965)The ultrastructure of the human retina. Brussels: Arscia Uitgaven N.V.

    Google Scholar 

  • Naka, K.-I. (1976) Neuronal circuitry in the cat fish retina.Investigative Ophthalmology 15, 926–35.

    Google Scholar 

  • Nakamura, Y., McGuire, B. A. andSterling, P. (1978) Selective uptake of [3H]-γ-aminobutyric acid (GABA) and [3H]-glycine by neurons of the amacrine layer of cat retina.Abstracts of the Society for Neuroscience 8th Annual Meeting 4, 639, No. 2046.

    Google Scholar 

  • Nelson, R. (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat.Journal of Comparative Neurology 172, 109–35.

    Google Scholar 

  • Nelson, R., Vonlutzöw, A., Kolb, H. andGouras, P. (1975) Horizontal cells in the cat retina with independent dendritic systems.Science 189, 137–9.

    Google Scholar 

  • Nelson, R., Kolb, H., Famiglietti, E. V. andGouras, P. (1976) Neural responses in the rod and cone systems of the cat retina: intracellular records and Procion stains.Investigative Ophthalmology 15, 946–53.

    Google Scholar 

  • Nelson, R. andKolb, H. (1978) Small field amacrines in the rod system of cat retina.ARVO Abstracts, Supplement to Investigative Ophthalmology and Visual Science, April 1978, p. 110.

  • Nelson, R., Famiglietti, E. V. andKolb, H. (1978) Intracellular staining reveals different levels of stratification for ON- and OFF-center ganglion cells in cat retina.Journal of Nemophysiology 41, 472–83.

    Google Scholar 

  • Niemeyer, G. andGouras, P. (1973) Rod and cone signals in S-potentials of the isolated perfused cat eye.Vision Research 13, 1603–12.

    Google Scholar 

  • Polyak, S. L. (1941)The Retina. University of Chicago Press.

  • Reese, T. andKarnovsky, M. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase.Journal of Cell Biology 34, 207–18.

    Google Scholar 

  • Rodieck, R. W. andRushton, W. A. H. (1976) Isolation of rod and cone contributions to cat ganglion cells by a method of light exchange.Journal of Physiology 254, 759–73.

    Google Scholar 

  • Shkolnick-Yarros, E. G. (1971) Neurons of the cat's retina.Vision Research 11, 7–26.

    Google Scholar 

  • Steinberg, R. H. (1969) Rod and cone contributions to S-potentials from the cat retina.Vision Research 9, 1319–29.

    Google Scholar 

  • Steinberg, R. H., Reid, M. andLacey, P. L. (1973) The distribution of rods and cones in the retina of the cat (Felis domesticus).Journal of Comparative Neurology 148, 229–48.

    Google Scholar 

  • Stevens, J. K. andGerstein, G. L. (1976) Spatiotemporal organization of cat lateral geniculate fields.Journal of Nemophysiology 39, 213–37.

    Google Scholar 

  • Stone, J. andFukuda, Y. (1974) Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells.Journal of Neurophysiology 37, 722–48.

    Google Scholar 

  • Stone, J. andHoffmann, K. P. (1972) Very slow-conducting ganglion cells in the cat's retina: a major, new functional type?Brain Research 43, 610–6.

    Google Scholar 

  • Toyoda, J., Hashimoto, H. andOhtsu, K. (1972) Bipolar-amacrine transmission in the carp retina.Vision Research 13, 295–307.

    Google Scholar 

  • Voaden, M. J. (1976) Gamma-aminobutyric acid and glycine as retinal neurotransmitters. InTransmitters in the Visual Process, (edited byBonting, S. L.) pp. 107–125. Oxford: Pergamon.

    Google Scholar 

  • Wassle, H., Levick, W. R. andCleland, B. G. (1975) The distribution of the alpha type of ganglion cells in the cat retina.Journal of Comparative Neurology 159, 419–38.

    Google Scholar 

  • Wassle, H. andRiemann, H. J. (1978) The mosaic of nerve cells in the mammalian retina.Proceedings of the Royal Society of London B200, 441–61.

    Google Scholar 

  • Werblin, F. S. (1972) Lateral interactions at inner plexiform layer of vertebrate retinas: antagonistic responses to change.Science 175, 1008–10.

    Google Scholar 

  • West, R. W. (1976) Light and electron microscopy of the ground squirrel retina: functional considerations.Journal of Comparative Neurology 168, 355–78.

    Google Scholar 

  • West, R. (1978) Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections.Vision Research 18, 129–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, H. The inner plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol 8, 295–329 (1979). https://doi.org/10.1007/BF01236124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236124

Keywords

Navigation