Skip to main content
Log in

Molecular alterations in the perijunctional region of frog skeletal muscle fibres following denervation

  • Published:
Journal of Neurocytology

Summary

The anatomical distribution of a frog skeletal muscle antigen was studied using immunofluorescence microscopy and a monoclonal antibody 3B6 that was produced against denervated skeletal muscle. In innervated muscles, the monoclonal antibody 3B6 stain was associated with the inner surface of the muscle plasma membrane at the endplate and myotendinous junction. After denervation, the monoclonal antibody 3B6 stain extended from the endplate laterally around the perimeter of muscle fibres and longitudinally well beyond the endplate for a total length of 600–1000 μm. The monoclonal antibody 3B6 stain thus forms a cylindrical structure centred on the endplate. This observation shows that denervation produces a non-homogeneous molecular change in skeletal muscle fibres: an antigen that is present in high concentrations at innervated endplates appears in restricted perijunctional regions of denervated muscle fibres. It further suggests that perijunctional regions of denervated muscle fibres differ from the remaining non-endplate regions in molecular composition and possibly also in function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloch, R. J. &Hall, Z. W. (1983) Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin.Journal of Cell Biology 97, 217–23.

    PubMed  Google Scholar 

  • Bloch, R. J. &Morrow, J. S. (1989) An unusual β-spectrin associated with clustered acetylcholine receptors.Journal of Cell Biology 108, 481–93.

    PubMed  Google Scholar 

  • Bozyczko, D., Decker, C., Muschler, J. &Horwitz, A. F. (1989) Integrin on developing and adult skeletal muscle.Experimental Cell Research 183, 72–91.

    PubMed  Google Scholar 

  • Burden, S. J. (1982) Identification of an intracellular postsynaptic antigen at the frog neuromuscular junction.Journal of Cell Biology 94, 521–30.

    PubMed  Google Scholar 

  • Burden, S. J. (1987) The extracellular matrix and subsynaptic sarcoplasm at nerve muscle synapses. InThe Vertebrate Neuromuscular Junction (edited bySalpeter, M. M.) pp. 163–86. New York: Allan R. Liss.

    Google Scholar 

  • Burden, S. J., DePalma, R. L. &Gottesman, G. S. (1983) Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43kD subsynaptic protein.Cell 35, 687–92.

    PubMed  Google Scholar 

  • Connor, E. A. &McMahan, U. J. (1987) Cell accumulation in the connective tissue of the junctional region of denervated muscle.Journal of Cell Biology 104, 109–20.

    Google Scholar 

  • Couteaux, R. &Pecot-Dechavassine, M. (1968) Particularites structurales du sarcoplasme sous-neural.Comptés Rendus de l'Academie des Sciences 266, 8–10.

    Google Scholar 

  • Covault, J., Cunningham, J. M. &Sanes, J. R. (1987) Neurite outgrowth on cryostat sections of innervated and denervated skeletal muscle.Journal of Cell Biology 105, 2479–88.

    Google Scholar 

  • Covault, J. &Sanes, J. R. (1985) Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles.Proceedings of the National Academy of Sciences (USA) 82, 4544–8.

    Google Scholar 

  • Dreyer, F. &Peper, K. (1974) The spread of acetylcholine sensitivity after denervation of frog skeletal muscle fibres.Pflügers Archives 348, 287–92.

    Google Scholar 

  • Froehner, S. C. (1984) Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies.Journal of Cell Biology 99, 88–96.

    PubMed  Google Scholar 

  • Froehner, S. C., Murnae, A. A., Tobler, M., Peng, H. B. &Sealock, R. (1987) A postsynaptic Mr 58000 (58K) protein concentrated at acetylcholine receptor rich sites in Torpedo electroplaques and skeletal muscle.Journal of Cell Biology 104, 1633–46.

    PubMed  Google Scholar 

  • Hall, Z. W. &Kelly, R. B. (1971) Enzymatic detachment of endplate acetylcholinesterase from muscle.Nature New Biology 232, 62–3.

    PubMed  Google Scholar 

  • Hall, Z. W., Lubit, W. &Schwartz, J. H. (1981) Cytoplasmic actin in postsynaptic structures at the neuromuscular junction.Journal of Cell Biology 90, 789–92.

    PubMed  Google Scholar 

  • Hamilton, S. L., McLaughlin, M. &Karlin, A. (1979) Formation of disulfide-linked oligomers of acetylcholine receptor in membrane from Torpedo electric tissue.Biochemistry 18, 155–63.

    PubMed  Google Scholar 

  • Levitt, T. A. &Salpeter, M. M. (1986) Gradient of extrajunctional acetylcholine receptors early after denervation of mammalian muscle.Journal of Neuroscience 6, 1606–12.

    PubMed  Google Scholar 

  • McMahan, U. J., Sanes, J. R. &Marshall, L. M. (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction.Nature 271, 172–4.

    PubMed  Google Scholar 

  • Miledi, R. (1960) The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation.Journal of Physiology 151, 1–3.

    PubMed  Google Scholar 

  • Oi, V. T. &Herzenberg, L. A. (1980) Immunoglobulin-producing hybrid cell lines. InSelected Methods in Cellular Immunology (edited byMishell, B. B. &Shiigi, S. M.) pp. 351–72. San Francisco: Freeman.

    Google Scholar 

  • Peng, H. B. &Froehner, S. C. (1985) Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells.Journal of Cell Biology 100, 1698–705.

    PubMed  Google Scholar 

  • Reiger, F., Grumet, M. &Edelman, G. M. (1985) N-CAM at the vertebrate neuromuscular junction.Journal of Cell Biology 101, 285–93.

    Google Scholar 

  • Reist, N. E., Magill, C. &McMahan, U. J. (1988) Agrin-like molecules at synaptic sites in normal, denervated and damaged skeletal muscles.Journal of Cell Biology 105, 2457–69.

    Google Scholar 

  • Salpeter, M. M. (1987) Development and neural control of neuromuscular junction and the junctional acetylcholine receptor. InThe Vertebrate Neuromuscular Junction (edited bySalpeter, M. M.) pp. 55–115. New York: Allan R. Liss.

    Google Scholar 

  • Sanes, J. S., Schachner, M. &Covault, J. (1986) Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, Uvomorulin, Laminin, Fibronectin, and a Heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle.Journal of Cell Biology 102, 420–31.

    Google Scholar 

  • Sealock, R., Paschal, B., Beckerle, M. &Burridge, K. (1986) Talin is a component of the rat neuromuscular junction.Experimental Cell Research 163, 143–50.

    PubMed  Google Scholar 

  • Shear, C. R. &Bloch, R. J. (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures.Journal of Cell Biology 101, 240–56.

    PubMed  Google Scholar 

  • Sobel, S. L., Heidmann, T., Hofler, J. &Changeux, J. P. (1978) Distinct protein components of Torpedo membranes carry the acetylcholine receptor site and the binding site for local anaesthetics and histrionicotoxin.Proceedings of the National Academy of Sciences (USA) 75, 510–14.

    Google Scholar 

  • Tidball, J. G., O'halloran, T. &Burridge, K. (1986) Talin at myotendinous Junctions.Journal of Cell Biology 103, 1465–72.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, E.A., Sugarman, H. & Rotshenker, S. Molecular alterations in the perijunctional region of frog skeletal muscle fibres following denervation. J Neurocytol 20, 323–331 (1991). https://doi.org/10.1007/BF01235549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235549

Keywords

Navigation