Skip to main content

Isolation, Cryosection and Immunostaining of Skeletal Muscle

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Adult skeletal muscle is maintained and repaired by resident stem cells called satellite cells, located between the plasmalemma of a muscle fiber, and the surrounding basal lamina. When needed, satellite cells are activated to form proliferative myoblasts, that then differentiate and fuse to existing muscle fibers, or fuse together to form replacement myofibers. In parallel, a proportion of satellite cells self-renew, to maintain the stem cell pool. To date, Pax7 is the marker of choice for identifying quiescent satellite cells. Co-immunostaining of skeletal muscle with Pax7 and laminin allows both identification of satellite cells, and the myofiber that they are associated with. Furthermore, satellite cells can be followed through the early stages of the myogenic program by co-immunostaining with myogenic regulatory factors such as MyoD. To test genetically modified mice for satellite cell expression, co-immunostaining can be performed for Pax7 and reporter genes such as eGFP. Here, we describe a method for identification of satellite cells in skeletal muscle sections, including muscle isolation, cryosectioning and co-immunostaining for Pax7 and laminin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89:81–88

    CAS  PubMed  Google Scholar 

  2. Scharner J, Zammit PS (2011) The muscle satellite cell at 50: the formative years. Skelet Muscle 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans R Soc Lond (Biol) 243:221–240

    Article  Google Scholar 

  5. Schmalbruch H, Lewis DM (2000) Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23:617–626

    Article  CAS  PubMed  Google Scholar 

  6. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  CAS  PubMed  Google Scholar 

  7. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  8. Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176

    Article  PubMed  Google Scholar 

  9. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  10. Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buckingham M, Relaix F (2015) PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 44:115–25

    Article  CAS  PubMed  Google Scholar 

  12. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4:e5205

    Article  PubMed  PubMed Central  Google Scholar 

  13. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502

    Article  CAS  PubMed  Google Scholar 

  14. Morrison JI, Loof S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  CAS  PubMed  Google Scholar 

  16. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  18. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    Article  CAS  PubMed  Google Scholar 

  19. Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 73:2538–2543

    CAS  PubMed  Google Scholar 

  20. van der Loos CM (2007) A focus on fixation. Biotech Histochem 82:141–154

    Article  PubMed  Google Scholar 

  21. Taylor CR, Shi SR, Chen C, Young L, Yang C, Cote RJ (1996) Comparative study of antigen retrieval heating methods: microwave, microwave and pressure cooker, autoclave, and steamer. Biotech Histochem 71:263–270

    Article  CAS  PubMed  Google Scholar 

  22. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    Article  CAS  PubMed  Google Scholar 

  23. van Essen HF, Verdaasdonk MA, Elshof SM, de Weger RA, van Diest PJ (2010) Alcohol based tissue fixation as an alternative for formaldehyde: influence on immunohistochemistry. J Clin Pathol 63:1090–1094

    Article  PubMed  Google Scholar 

  24. Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482:319–330

    Article  CAS  PubMed  Google Scholar 

  25. Moyle LA, Zammit PS (2014) Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells. Methods Mol Biol 1210:63–78

    Article  CAS  PubMed  Google Scholar 

  26. Fortier M, Figeac N, White RB, Knopp P, Zammit PS (2013) Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells. Dev Biol 382:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Zammit and Goto labs for help and advice. We also gratefully acknowledge colleagues who shared antibodies through the Developmental Studies Hybridoma Bank developed under the Auspices of the NICHD and maintained by the University of Iowa. The laboratory of Professor Peter Zammit is supported by the Medical Research Council, Muscular Dystrophy UK, Association Française contre les Myopathies, FSHSoc and Rational Bioactive Materials Design for Tissue Regeneration (BIODESIGN) (262948 from the European Commission Seventh Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Zammit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ortuste Quiroga, H.P., Goto, K., Zammit, P.S. (2016). Isolation, Cryosection and Immunostaining of Skeletal Muscle. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics