Skip to main content
Log in

Quantum integrable systems and differential Galois theory

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

This paper is devoted to a systematic study of quantum completely integrable systems (i.e., complete systems of commuting differential operators) from the point of view of algebraic geometry. We investigate the eigenvalue problem for such systems and the correspondingD-module when the eigenvalues are in generic position. In particular, we show that the differential Galois group of this eigenvalue problem is reductive at generic eigenvalues. This implies that a system is algebraically integrable (i.e., its eigenvalue problem is explicitly solvable in quadratures) if and only if the differential Galois group is commutative for generic eigenvalues. We apply this criterion of algebraic integrability to two examples: finite-zone potentials and the elliptic Calogero-Moser system. In the second example, we obtain a proof of the Chalyh-Veselov conjecture that the Calogero-Moser system with integer parameter is algebraically integrable, using the results of Felder and Varchenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AK] A. Altman, S. Kleiman,Introduction to Grothendieck Duality Theory, Lecture Notes in Math., 146, Springer-Verlag, 1970.

  • [Am] S. Amitsur,Commutative linear differential operators, Pacific Journal of Math.8 (1958), 1–11.

    Google Scholar 

  • [Ar] В. И. Аролъд,Маемамические мемоды классической механки, Москва, Москва, Наука, 1974. English translation: V. Arnold,Mathematical Methods of Classical Mechanics, Graduate Texts in Math., 060, Springer-Verlag, 1978.

    Google Scholar 

  • [BD] A. Beilinson and V. Drinfeld,Quantization of Hitchin's Hamiltonians and Hecke eigensheaves, Preprint (1996).

  • [Bo] A. Borel et al.,Algebraic D-modules, Progress in Mathematics, Birkhäuser, Boston 1988.

    Google Scholar 

  • [CV1] O. Chalykh, A. Veselov,Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys.126 (1990), 597–611.

    Google Scholar 

  • [CV2] O. Chalykh, A. Veselov,Integrability in the theory of Schrodinger operator and harmonic analysis, Comm. Math. Phys.152 (1993), 29–40.

    Google Scholar 

  • [De]P. Deligne,Catégories Tannakiennes, Grothendieck Festschrift2 (1991), Birkhäuser, Boston, 111–195.

    Google Scholar 

  • [DMN] B. Dubrovin, V. Matveev, S. Novikov,Nonlinear equations of KdV type, finite zone linear operators, and abelian varieties, Uspekhi Mat. Nauk31 (1976), no. 1, 55–136 (in Russian). English translation: B. Dubrovin, V. Matveev, S. Novikov,Nonlinear equations of KdV type, finite zone linear operators, and abelian varieties, Russian Math. Surv.31 (1976), no. 1, 59–146.

    Google Scholar 

  • [Dr] V. Drinfeld,Commutative subrings of certain noncommutative rings, Funktsional. Anal. i Ego and Prilozh.11 (1977), no. 1, 11–14 (in Russian). English translation: V. Drinfeld,Commutative subrings of certain noncommutative rings, Funct. Anal. Appl.11 (1977), no. 1, 9–11.

    Google Scholar 

  • [EFK] P. Etingov, I. Frenkel and A. Kirillov, Jr.,Spherical functions on affine Lie groups, Duke Math. J.80 (1995), no. 1, 59–90.

    Google Scholar 

  • [FV] G. Felder and A. Varchenko,Three formulas for eigenfunctions of integrable Schrödinger operators, Preprint (1995).

  • [Ka] I. Kaplansky,An Introduction to Differential Algebra, Hermann, Paris, 1957.

    Google Scholar 

  • [Katz] N. Katz,On the calculation of certain differential Galois groups, Inv. Math.87 (1987), 13–62.

    Google Scholar 

  • [Kr] I. Krichever,Methods of algebraic geometry in the theory of non-linear equations, Uspekhi Mat. Nauk32 (1977), no. 6, 182–214 (in Russian). English translation: I. Krichever,Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surv.32 (1977), no. 6, 183–208.

    Google Scholar 

  • [ML] L. Makar-Limanov,The automorphisms of the free algebra with two generators, Funktsional. Anal. i Ego Prilozh.4 (1970), no. 3, 107–108 (in Russian). English translation: L. Makar-Limanov,The automorphisms of the free algebra with two generators, Funct. Analysis and Appl.4 (1970), no. 3, 332–333.

    Google Scholar 

  • [OP] M. Olshanetsky and A. Perelomov,Quantum integrable systems related to Lie algebras, Phys. Rep.94 (1983), 313–404.

    Google Scholar 

  • [VSC] A. Veselov, K. Styrkas, O. Chalykh,Algebraic integrability for the Schrödinger equation and finite reflection groups, Teor. i Mat. Fiz.94 (1993), no. 2, 253–275 (in Russian). English translation: A. Veselov, K. Styrkas, O. Chalykh,Algebraic integrability for the Schrödinger equation and finite reflection groups, Theor. and Math. Phys.94 (1993), no. 2, 182–197.

    Google Scholar 

  • [WW] E. T. Whittaker, G. N. Watson,Course of Modern Analysis, 4th Edition, Cambridge Univ. Press, 1958.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braverman, A., Etingof, P. & Gaitsgory, D. Quantum integrable systems and differential Galois theory. Transformation Groups 2, 31–56 (1997). https://doi.org/10.1007/BF01234630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234630

Keywords

Navigation