Skip to main content
Log in

Fine structure of the blood—brain interface in the cuttlefishSepia officinalis (Mollusca, Cephalopoda)

  • Published:
Journal of Neurocytology

Summary

The blood—brain interface was studied in a cephalopod mollusc, the cuttlefishSepia officinalis, by thin-section electron microscopy. Layers lining blood vessels in the optic and vertical lobes of the brain, counting from lumen outwards, include a layer of endothelial cells and associated basal lamina, a layer of pericytes and a second basal lamina, and perivascular glial cells. The distinction between endothelial cells and pericytes breaks down in small vessels. In the smallest microvessels, equivalent to capillaries, and in venous channels, the endothelial and pericyte layers are discontinuous, but a layer of glial cells is always interposed between blood and neural tissue, except where neurosecretory endings reach the second basal lamina. In microvessels in which cell membranes of the entire perivascular glial sheath could be followed, the glial layer was apparently ‘seamless’, not interrupted by an intercellular cleft, inca 90% (27/30) of the profiles. Where a cleft did occur, it showed an elongated overlap zone between adjacent cells. The walls of venous channels are formed by lamellae of overlapping glial processes. In arterial vessels, the pericyte layer is thicker and more complete, with characteristic sinuous intercellular clefts. Arterioles are defined as vessels containing ‘myofilaments’ within pericytes, and arteries those in which the region of the second basal lamina is additionally expanded into a wide collagenous zone containing fibroblast-like cells and cell processes enclosing myofilaments. The ‘glio-vascular channels’ observed inOctopus brain are not a prominent feature ofSepia optic and vertical lobe. The organization of cell layers at theSepia blood—brain interface suggests that it is designed to restrict permeability between blood and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J. (1972) Access of ferritin to the interstitial space ofCarcinus brain from intracerebral blood vessels.Tissue &Cell 4, 99–104.

    Google Scholar 

  • Abbott, N. J. &Bundgaard, M. (1987) Microvessel surface area, density and dimensions in brain and muscle of the cephalopodSepia officinalis.Proceedings of the Royal Society B,230, 459–82.

    Google Scholar 

  • Abbott, N. J. &Bundgaard, M. (1992) Electron-dense tracer evidence for a blood—brain barrier in the cuttlefishSepia officinalis.Journal of Neurocytology 21, 276–294.

    PubMed  Google Scholar 

  • Abbott, N. J. &Pichon, Y. (1987) The glial blood—brain barrier of crustacea and cephalopods: a review.Journal de Physiologie 82, 87–96.

    Google Scholar 

  • Abbott, N. J., Bundgaard, M. &Cserr, H. F. (1981) Fine-structural evidence for a glial blood—brain barrier to protein in the cuttlefish,Sepia officinalis.Journal of Physiology 316, 52–3P.

    Google Scholar 

  • Abbott, N. J., Bundgaard, M. &Cserr, H. F. (1985a) Brain vascular volume, electrolytes and blood—brain interface in the cuttlefishSepia officinalis (Cephalopoda).Journal of Physiology 368, 197–212.

    PubMed  Google Scholar 

  • Abbott, N. J., Bundgaard, M. &Cserr, H. F. (1985b) Tightness of the blood—brain barrier and evidence for brain interstitial fluid flow in the cuttlefishSepia officinalis.Journal of Physiology 368, 213–226.

    PubMed  Google Scholar 

  • Abbott, N. J., Bundgaard, M. &Cserr, H. F. (1986a) Comparative physiology of the blood—brain barrier. InThe Blood-Brain Barrier in Health and Disease (edited bySuckling, A. J., Rumsby, M. G. &Bradbury, M. W. B.) pp. 52–72. Chichester: Ellis Horwood.

    Google Scholar 

  • Abbott, N. J., Lane, N. J. &Bundgaard, M. (1986b) The blood—brain interface in invertebrates.Annals of the New York Academy of Sciences 481, 20–41.

    PubMed  Google Scholar 

  • Abbott, N. J., Bundgaard, M., Lane, N. J. &Møllgård, K. (1988) Parallels between junctions in invertebrate brain and embryonic mammalian brain.Journal of Physiology 400, 72P.

    Google Scholar 

  • Abbott, N. J., Lane, N. J. &Bundgaard, M. (1992) A fibre-matrix model for the restricting junction of the blood—brain barrier in a cephalopod mollusc: implications for capillary and epithelial permeability.Journal of Neurocytology 21, 304–311.

    PubMed  Google Scholar 

  • Barber, V. C. &Graziadei, P. (1965) The fine structure of cephalopod blood vessels. I. Some smaller peripheral vessels.Zeitschrift für Zellforschung und mikroskopische Anatomie 66, 765–81.

    Google Scholar 

  • Barber, V. C. &Graziadei, P. (1967) The fine structure of cephalopod blood vessels. II. The vessels of the nervous system.Zeitschrift für Zellforschung und mikroskopische Anatomie 77, 147–61.

    Google Scholar 

  • Binnington, K. C. &Lane, N. J. (1980) Perineurial and glial cells in the tickBoophilus microplus (Acarina: Ixodidae); freeze-fracture and tracer studies.Journal of Neurocytology 9, 343–62.

    PubMed  Google Scholar 

  • Bouldin, T. W. &Krigman, M. R. (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ion.Brain Research 99, 444–8.

    PubMed  Google Scholar 

  • Bradbury, M. W. B. (1979)The Concept of a Blood-Brain Barrier. Chichester: Wiley.

    Google Scholar 

  • Brightman, M. W. &Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain.Journal of Cell Biology 40, 648–77.

    PubMed  Google Scholar 

  • Brightman, M. W., Reese, T. S., Olsson, Y. &Klatzo, I. (1971) Morphologic aspects of the blood—brain barrier to peroxidase in elasmobranchs.Progress in Neuropathology 1, 146–61.

    Google Scholar 

  • Broadwell, R. D. &Brightman, M. W. (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood,Journal of Comparative Neurology 166, 257–84.

    PubMed  Google Scholar 

  • Browning, J. (1979)Octopus microvasculature: permeability to ferritin and carbon.Tissue & Cell 11, 371–383.

    Google Scholar 

  • Browning, J. (1982) The density and dimensions of exchange vessels inOctopus pallidus.Journal of Zoology 196, 569–79.

    Google Scholar 

  • Bundgaard, M. (1982) Ultrastructure of frog cerebral and pial microvessels and their permeability to lanthanum ions.Brain Research 241, 57–65.

    PubMed  Google Scholar 

  • Bundgaard, M. &Cserr, H. F. (1981) A glial blood—brain barrier in elasmobranchs.Brain Research 226, 61–73.

    PubMed  Google Scholar 

  • Casley-Smith, J. R. (1987) The phylogeny of the fine structure of blood vessels and lymphatics: similarities and differences.Lymphology 20, 182–8.

    PubMed  Google Scholar 

  • Crone, C. (1986) The blood—brain barrier as a tight epithelium: where is information lacking?Annals of the New York Academy of Sciences 481, 174–85.

    PubMed  Google Scholar 

  • Cserr, H. F. &Bundgaard, M. (1984) Blood-brain interfaces in vertebrates — a comparative approach.American Journal of Physiology 246, R277–88.

    PubMed  Google Scholar 

  • Davson, H., Welch, K. &Segal, M. B. (1987)The Physiology and Pathophysiology of the Cerebrospinal Fluid. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Froesch, D. &Mangold, K. (1976) Uptake of ferritin by the cephalopod optic gland.Cell & Tissue Research 170, 549–51.

    Google Scholar 

  • Gotow, T. &Hashimoto, P. H. (1984) Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system.Journal of Neurocytology 13, 727–42.

    Google Scholar 

  • Gray, E. G. (1969) Electron microscopy of the glio-vascular organization of the brain ofOctopus.Philosophical Transactions of the Royal Society B,255, 13–32.

    Google Scholar 

  • Gupta, B. L., Mellon, B. L. &Treherne, J. E. (1969) The organization of the central nervous connectives inAnodonta cygnea (Linnaeus) (Mollusca: Eulamellibranchia).Tissue & Cell 1, 1–30.

    Google Scholar 

  • Harrison, J. B. &Lane, N. J. (1981) Lack of restriction at the blood—brain interface inLimulus despite atypical junctional arrangements.Journal of Neurocytology 10, 233–250.

    PubMed  Google Scholar 

  • Herman, I. M., Newcomb, P. M., Coughlin, J. E. &Jacobson, S. (1987) Characterization of microvascular cell cultures from normotensive and hypertensive rat brains: pericyte-endothelial cell interactionsin vitro.Tissue & Cell 19, 197–206.

    Google Scholar 

  • Kristensson, K., Strömberg, E., Elofsson, R. &Olsson, Y. (1972) Distribution of protein tracers in the nervous system of the crayfish (Astacus astacus L.) following systemic and local application.Journal of Neurocytology 1, 35–47.

    PubMed  Google Scholar 

  • Lane, N. J. (1974) The organization of the insect nervous system. InInsect Neurobiology (edited byTreherne, J. E.) pp. 1–71. Frontiers of Biology 35. Amsterdam: North Holland.

    Google Scholar 

  • Lane, N. J. &Abbott, N. J. (1992) Freeze-fracture evidence for a novel restricting junction at the blood—brain barrier of the cuttlefishSepia officinalis.Journal of Neurocytology 21, 295–303.

    PubMed  Google Scholar 

  • Lane, N. J. &Chandler, H. J. (1980) Definitive evidence for the existence of tight junctions in invertebrates.Journal of Cell Biology 86, 765–74.

    Google Scholar 

  • Lane, N. J. &Skaer, H. LeB. (1980) Intercellular junctions in insect tissues.Advances in Insect Physiology 15, 35–213.

    Google Scholar 

  • Lane, N. J. &Treherne, J. E. (1972a) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system.Tissue & Cell 4, 427–36.

    Google Scholar 

  • Lane, N. J. &Treherne, J. E. (1972b) Accessibility of the central nervous connectives ofAnodonta cygnea to a compound of large molecular weight.Journal of Experimental Biology 56, 493–9.

    PubMed  Google Scholar 

  • Lane, N. J., Harrison, J. B. &Bowerman, R. F. (1981) A vertebrate-like blood—brain barrier, with intraganglionic blood channels and occluding junctions in the scorpion.Tissue & Cell 13, 557–76.

    Google Scholar 

  • Lane, N. J., Leslie, R. A. &Swales, L. S. (1975) Insect peripheral nerves: accessibility of neurohaemal regions to lanthanum.Journal of Cell Science 18, 179–97.

    PubMed  Google Scholar 

  • Lane, N. J., Swales, L. S. &Abbott, N. J. (1977) Lanthanum penetration in crayfish nervous system: observations on intact and ‘desheathed’ preparations.Journal of Cell Science 23, 315–24.

    PubMed  Google Scholar 

  • Larson, D. M., Carson, M. P. &Haudenschild, C. C. (1987) Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes.Microvascular Research 34, 184–99.

    PubMed  Google Scholar 

  • Murphy, S. &Pearce, B. (1987) Functional receptors for neurotransmitters on astroglial cells.Neuroscience 22, 381–94.

    PubMed  Google Scholar 

  • Nakajima, Y., Pappas, G. D. &Bennett, M. V. L. (1965) The fine structure of the supramedullary neurons of the puffer fish, with special reference to endocellular and pericellular capillaries.American Journal of Anatomy 116, 471–92.

    PubMed  Google Scholar 

  • Neuwelt, E. A. ed. (1989)Implications of the Blood-Brain Barrier and its Manipulation, Vol 1. New York and London: Plenum.

    Google Scholar 

  • Nicholls, J. G. &Kuffler, S. W. (1964) Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons.Journal of Neurophysiology 27, 645–71.

    PubMed  Google Scholar 

  • Oldendorf, W. H., Cornford, M. E. &Brown, W. J. (1977) The large apparent work capability of the blood—brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat.Annals of Neurology 1, 409–17.

    PubMed  Google Scholar 

  • Packard, A. (1972) Cephalopods and fish: the limits of convergence.Biological Reviews 47, 241–307.

    Google Scholar 

  • Reese, T. S. &Karnovsky, M. J. (1967) Fine structural localization of a blood—brain barrier to exogenous peroxidase.Journal of Cell Biology 34, 207–17.

    PubMed  Google Scholar 

  • Sattelle, D. B. (1973) Potassium movements in a central nervous ganglion ofLimnaea stagnalis (L.) (Gastropoda: Pulmonata).Journal of Experimental Biology 58, 15–28.

    Google Scholar 

  • Sattelle, D. B. &Lane, N. J. (1972) Architecture of gastropod central nervous tissue in relation to ionic movements.Tissue & Cell 4, 253–70.

    Google Scholar 

  • Schultz, R. L. (1967) An intraneuronal capillary in rat cerebral cortex.Journal of Ultrastructure Research 20, 422–32.

    PubMed  Google Scholar 

  • Shivers, R. R. (1970) Fine structure of crayfish optic ganglion vascularization and permeability.Journal of Cell Biology 47, 191A.

    Google Scholar 

  • Simionescu, N. &Simionescu, M. (1976) Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect.Journal of Cell Biology 70, 608–21.

    Google Scholar 

  • Skaer, H. Leb., Treherne, J. E., Benson, J. A. &Moreton, R. B. (1978) Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella itenigmatica Fauvel). I. Ultrastructural and electrophyiological observations on áxonal accessibility.Journal of Experimental Biology 76, 191–204.

    PubMed  Google Scholar 

  • Stephens, P. R. &Young, J. Z. (1969) The glio-vascular system of, cephalopods.Philosophical Transactions of the Royal Society B,255, 1–11.

    Google Scholar 

  • Tublitz, N. J. &Truman, J. W. (1985) Intracellular stimulation of an identified neuron evokes cardioacceleratory peptide release.Science 228, 1013–15.

    PubMed  Google Scholar 

  • Wells, M. J. (1978)Octopus. Physiology and Behaviour of an Advanced Invertebrate. London: Chapman & Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundgaard, M., Abbott, N.J. Fine structure of the blood—brain interface in the cuttlefishSepia officinalis (Mollusca, Cephalopoda). J Neurocytol 21, 260–275 (1992). https://doi.org/10.1007/BF01224760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01224760

Keywords

Navigation