Skip to main content
Log in

Effects of quisqualic acid on the corneal and intraretinal direct-current electroretinogram and on the standing potential of the rabbit eye

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Quisqualic acid, an excitatory amino acid agonist, has been shown to stimulate inositol phosphate production in the rabbit retina. Inositol trisphosphate serves as a second messenger and increases intracellular calcium. We investigated the influence of quisqualic acid on the direct-current electroretinogram and on the standing potential of the rabbit eye. After unilateral vitrectomy, the corneal direct-current electroretinogram and the standing potential were recorded from both eyes of albino rabbits during simultaneous unilateral intravitreal perfusion with quisqualic acid alternating with control solution. The contralateral eye was used as a control. Intravitreal perfusion with 100-µM and 200-µM quisqualic acid elevated the standing potential significantly. This elevation was accompanied by a significant increase in c-wave amplitude and a significant decrease in b-wave amplitude. Quisqalic acid at 200-µM concentration decreased the a-wave amplitude also.In vivo intraretinal recordings showed that intravitreal perfusion with quisqualic acid at 200-µM concentration significantly increased the retinal pigment epithelial component of the c-wave. We conclude that quisqualic acid influences the direct-current electroretinogram and the standing potential apparently through its action on the retinal pigment epithelium. A possible mode of action is increased production of inositol trisphosphate, followed by an increase in intracellular release of calcium ions and an increase in basal chloride conductance. The decrease in a- and b-wave amplitudes indicates direct effects of quisqualic acid also on the neural retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EAA:

excitatory amino acid

IP:

inositol phosphate

NMDA:

N-methyl-Daspartate

PPI:

phosphoinositide

QA:

quisqualic acid

References

  1. Morgan IG. Kainic acid as a tool in retinal research. In: Osborne NN, Chader GJ, eds. Progress in retinal research. Oxford: Pergamon Press, 1983; 2: 249–66.

    Google Scholar 

  2. Bloomfield SA, Dowling JE. Roles of aspartate and glutamate in synaptic transmission in rabbit retina I: outer plexiform layer. J Neurophysiol 1985; 53: 699–713.

    PubMed  Google Scholar 

  3. Massey SC, Redburn DA. Transmitter circuits in the vertebrate retina. Prog Neurobiol 1987; 28: 55–96.

    PubMed  Google Scholar 

  4. Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S. Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 1985; 317: 717–9.

    PubMed  Google Scholar 

  5. Nicoletti F, Iadarola MJ, Wroblewski JT, Costa E. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with alpha-l-adrenoreceptors. Proc Natl Acad Sci U S A 1986; 83: 1931–5.

    PubMed  Google Scholar 

  6. Nicoletti F. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem 1986; 46: 40–6.

    PubMed  Google Scholar 

  7. Recasens M. Characterization of excitatory amino acid receptor subtypes involved in the stimulation of inositol phosphate synthesis in rat brain by synaptoneurosomes. Eur J Pharmacol 1987; 141: 87–93.

    PubMed  Google Scholar 

  8. Schmidt BH. Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons. Mol Pharmacol 1987; 32: 364–8.

    PubMed  Google Scholar 

  9. Recasens M, Guiramand J, Nourigat A, Sassetti I, Devilliers G. A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain by synaptoneurosomes. Neurochem Int 1988; 13: 463–7.

    Google Scholar 

  10. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling, Nature 1989; 341: 197–205.

    PubMed  Google Scholar 

  11. Osborne NN. Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina: evidence for a specific quisqualate receptor subtype associated with neurons. Exp Eye Res 1990; 50: 397–405.

    PubMed  Google Scholar 

  12. Osborne NN, FitzGibbon F, Schwartz G. Muscarinic acetylcholine receptor-mediated phosphoinositide turnover in cultured human retinal pigment epithelium cells. Vision Res 1991; 31: 1119–27.

    PubMed  Google Scholar 

  13. Feldman EL, Randolph AE, Johnston GC, Del Monte MA, Greene DA. Receptor-coupled phosphoinositide hydrolysis in human retinal pigment epithelium. J Neurochem 1991; 56: 2094–100.

    PubMed  Google Scholar 

  14. Friedman Z, Delahunty TM, Linden J, Campochiaro PA. Human retinal pigment epithelial cells possess V1 vasopressin receptors. Curr Eye Res 1991; 10: 811–6.

    PubMed  Google Scholar 

  15. Kuriyama S, Ohuchi T, Yoshimura N, Honda Y. Growth factor-induced cytosolic calcium ion transients in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1991; 32: 2882–90.

    PubMed  Google Scholar 

  16. Liu N-P, FitzGibbon F, Nash M, Osborne NN. Epidermal growth factor potentiates the transmitter-induced stimulation of c-AMP and inositol phosphates in human pigment epithelial cells in culture. Exp Eye Res 1992; 55: 489–97.

    PubMed  Google Scholar 

  17. Osborne NN, FitzGibbon F, Nash M, Liu N, Leslie R, Cholewinski A. Serotonergic, 5-HT2 receptor-mediated phosphoinositide turnover and mobilization of calcium in cultured rat pigment epithelium cells. Vision Res 1993; 33: 2171–9.

    PubMed  Google Scholar 

  18. Lopez-Colome AM, Fragoso G, Wright CE, Sturman JA. Excitatory amino acid receptors in membranes from cultured human retinal pigment epithelium. Curr Eye Res 1994; 13: 553–60.

    PubMed  Google Scholar 

  19. Steinberg RH, Linsenmeier RA, Griff ER. Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. In: Osborne NN, Chader GJ, eds. Progress in retinal research. Oxford: Pergamon Press, 1985; 4: 33–66.

    Google Scholar 

  20. Witkowsky P, Dudek FE, Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol 1975; 65: 119–34.

    PubMed  Google Scholar 

  21. Karwoski CJ, Proenza LM. Relationship between Müller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol 1977; 40: 244–59.

    PubMed  Google Scholar 

  22. Karwoski CJ, Proenza LM. Spatio-temporal variables in the relationship of neuronal activity to potassium and glial responses. Vision Res 1981; 21: 1713–8.

    PubMed  Google Scholar 

  23. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium, II: mechanism of the light peak and other responses originating at the basal membrane. J Neurosci 1989; 9: 1977–84.

    PubMed  Google Scholar 

  24. Joseph DP, Miller SS. Alpha-l-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium. J Gen Physiol 1992; 99: 263–90.

    PubMed  Google Scholar 

  25. Ueda Y, Steinberg RH. Chloride currents in freshly isolated rat retinal pigment epithelial cells. Exp Eye Res 1994; 58: 331–42.

    PubMed  Google Scholar 

  26. Bialek S, Joseph DP, Miller SS. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation. J Physiol 1995; 484: 53–67.

    PubMed  Google Scholar 

  27. Brew H, Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 1987; 327: 707–9.

    PubMed  Google Scholar 

  28. Amato A, Barbour B, Szatkowski M, Attwell D. Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina. J Physiol 1994; 479: 371–80.

    PubMed  Google Scholar 

  29. Schwartz EA. L-glutamate conditionally modulates the K+ current of Müller glial cells. Neuron 1993; 10: 1141–9.

    PubMed  Google Scholar 

  30. David P, Lusky M, Teichberg VI. Involvement of excitatory neurotransmitters in the damage produced in chick embryo retinas by anoxia and extracellular high potassium. Exp Eye Res 1988; 46: 657–62.

    PubMed  Google Scholar 

  31. Yoon YH, Marmor MF. Dextromethorphan protects retina against ischemic injuryin vivo. Arch Ophthalmol 1989; 107: 409–11.

    PubMed  Google Scholar 

  32. Mosinger JL, Price MT, Bai HY, Xiao H, Wozniak DF, Olney JW. Blockade of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in thein vivo adult mammalian retina. Exp Neurol 1991; 113: 10–7.

    PubMed  Google Scholar 

  33. Abu El-Asrar AM, Morse PH, Maimone D, Torczynski E, Reder AT. MK-801 protects retinal neurons from hypoxia and the toxicity of glutamate and aspartate. Invest Ophthalmol Vis Sci 1992; 33: 3463–8.

    PubMed  Google Scholar 

  34. Weber M, Bonaventure N, Sahel JA. Protective role of excitatory amino acid antagonists in experimental retinal ischemia. Graefes Arch Clin Exp Ophthalmol 1995; 233: 360–5.

    PubMed  Google Scholar 

  35. Xu X, Xu J, Huang B, Livsey CT, Karwoski CJ. Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog. Exp Eye Res 1991; 52: 691–8.

    PubMed  Google Scholar 

  36. Vaegan, Millar TJ. Effects of kainic acid and NMDA on the pattern electroretinogram, the scotopic threshold response, the oscillatory potentials and the electroretinogram in the urethane anesthetized cat. Vision Res 1994; 34: 1111–25.

    PubMed  Google Scholar 

  37. Textorius O, Nilsson SEG, Andersson B-E. Effects of intraocular perfusion with two alternating irrigation solutions on the simultaneously recorded electroretinogram of albino rabbits. Doc Ophthalmol 1986; 63: 349–58

    PubMed  Google Scholar 

  38. Jarkman S. Effects of low doses of forskolin on the c-wave of the direct current electroretinogram and on the standing potential of the eye. Doc Ophthalmol 1988; 67: 305–14.

    Google Scholar 

  39. Jarkman S, Bragadóttir R. Adrenergic effects on the corneal and intraretinal direct-current electroretinogram and on the standing potential of albino rabbit eyes. Doc Ophthalmol 1995; 89: 251–66.

    PubMed  Google Scholar 

  40. Elenius W. Recovery in the dark of the rabbit's electroretinogram in relation to intensity, duration and colour of light-adaptation. Acta Physiol Scand Suppl 1958; 44: 1–57.

    Google Scholar 

  41. Textorius O, Nilsson SEG. Effects of intraocular irrigation with melatonin on the c-wave of the direct current electroretinogram and on the standing potential of the eye in albino rabbits. Doc Ophthalmol 1987; 65: 97–111.

    PubMed  Google Scholar 

  42. Jarkman S. Effects of vasoactive intestinal peptide (VIP) on the dc ERG and on the standing potential of albino rabbit eyes, Clin Vision Sci 1992; 7: 71–6.

    Google Scholar 

  43. Schwarcz R, Scholz D, Coyle JT. Structure-activity relations for the neurotoxicity of kainic acid derivatives and glutamate analogues. Neuropharmacology 1978; 17: 145–51.

    PubMed  Google Scholar 

  44. Hampton CK, Garcia C, Redburn DA. Localization of kainic acid-sensitive cells in mammalian retina. J Neurosci Res 1981; 6: 99–111.

    PubMed  Google Scholar 

  45. Shimazaki H, Karwoski CJ, Proenza LM. Aspartate-induced dissociation of proximal from distal retinal activity in the mudpuppy. Vision Res 1984; 24: 587–95.

    PubMed  Google Scholar 

  46. Sarantis M, Everett K, Attwell D. A presynaptic action of glutamate at the cone output synapse. Nature 1988; 332: 451–3.

    PubMed  Google Scholar 

  47. Steinberg RH, Schmith R, Brown KT. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature 1970; 227: 728–30.

    PubMed  Google Scholar 

  48. Oakley B II, Green DG. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electreretinogram. J Neurophysiol 1976; 39: 1117–33.

    PubMed  Google Scholar 

  49. Noell WK. Studies on the electrophysiology and the metabolism of the retina. Randolph Field, Texas: US Air Force, 1953. SAM Project 21-1201-004.

    Google Scholar 

  50. Miller SS, Steinberg RH. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol 1977; 36: 337–72.

    PubMed  Google Scholar 

  51. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium, I: membrane potentials, apparent resistances, and mechanisms. J Neurosci 1989; 9: 1968–76.

    PubMed  Google Scholar 

  52. Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol 1990; 424: 283–300.

    PubMed  Google Scholar 

  53. Joseph DP, Miller SS. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol 1991; 435: 439–63.

    PubMed  Google Scholar 

  54. Fujii S, Gallemore RP, Hughes BA, Steinberg RH. Direct evidence for a basolateral membrane Cl conductance in toad retinal pigment epithelium. Am J Physiol 1992; 262: C374–83.

    PubMed  Google Scholar 

  55. Greenberger LM, Besharse JC. Stimulation of photoreceptor disc shedding and, pigment epithelial phagocytosis by glutamate, aspartate, and other amino acids. J Comp Neurol 1985; 239: 361–72.

    PubMed  Google Scholar 

  56. Besharse JC, Spratt G. Excitatory amino acids and rod photoreceptor disc shedding: analysis using specific agonist. Exp Eye Res 1988; 47: 609–20.

    PubMed  Google Scholar 

  57. Heth CA, Marescalchi PA. Inositol triphosphate generation in cultured rat retinal pigment epithelium. Invest Ophthalmol Vis Sci 1994; 35: 409–16.

    PubMed  Google Scholar 

  58. Mawer ML, Miller RJ. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci 1990; 11: 254–60.

    PubMed  Google Scholar 

  59. Malinow R, Madison DV, Tsien RW. Persistent protein kinase activity underlying longterm potentiation. Nature 1988; 335: 820–4.

    PubMed  Google Scholar 

  60. Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 1989; 36: 106–12.

    PubMed  Google Scholar 

  61. Aniksztejn L, Bregestovski P, Ben-Ari Y. Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol 1991; 205: 327–8.

    PubMed  Google Scholar 

  62. Bleakman D, Rusin KI, Chard PS, Glaum SR, Miller RJ. Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 1992; 42: 192–6.

    PubMed  Google Scholar 

  63. Schoepp DD, Conn PJ. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 1993; 14; 13–20.

    PubMed  Google Scholar 

  64. Dixon DB, Copenhagen DR. Two types of glutamate receptors differentially excite amacrine cells in the tiger salamander retina. J Physiol 1992; 449: 589–606.

    PubMed  Google Scholar 

  65. Witkovsky P, Dearry A. Functional roles of dopamine in the vertebrate retina. In: Osborne NN, Chader GJ, eds. Progress in retinal research. Oxford: Pergamon Press, 1991; 11: 247–92.

    Google Scholar 

  66. Dawis SM, Niemeyer G. Similarity and diversity of monoamines in their effects on the standing potential, light peak and electroretinogram of the perfused cat eye. Clin Vision Sci 1988; 3: 109–18.

    Google Scholar 

  67. Gallemore RP, Steinberg RH. Effects of dopamine on the chick retinal pigment epithelium. Invest Ophthalmol Vis Sci 1990; 31: 67–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Bragadóttir, R., Jarkman, S. et al. Effects of quisqualic acid on the corneal and intraretinal direct-current electroretinogram and on the standing potential of the rabbit eye. Doc Ophthalmol 91, 349–362 (1995). https://doi.org/10.1007/BF01214653

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01214653

Key words

Navigation