Skip to main content
Log in

Nonlinear AR modeling

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A major reason for the success of linear autoregressive (AR) modeling is that Kolmogrorov proved that every linear system could be represented by a linear AR model of infinite order. The computation of a finite order AR approximation is, of course, the practical goal. In this paper, we prove that every nonlinear system with a Volterra series expansion can be represented as a nonlinear AR model of infinite order. Our method shows how an approximation to any desired order and degree can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arapostathis, B. Jakubczyk, H. G. Lee, S. I. Marcus, and E. D. Sontag, The effect of sampling on linear equivalence and feedback linearization,Systems and Control Letters 13 (5), 373–382, Dec. 1989.

    Google Scholar 

  2. R. W. Brockett, Nonlinear systems and differential geometry,Proc. IEEE 64, 61–72, 1976.

    Google Scholar 

  3. R. D. DeGroat, L. R. Hunt, D. A. Linebarger, and M. Verma, Discrete-time nonlinear system stability,IEEE Transactions on Circuits and Systems —I: Fundamental Theory and Applications 39 (10), 834–840, Oct. 1992.

    Google Scholar 

  4. R. D. DeGroat, D. A. Linebarger, and L. R. Hunt, Nonlinear state space modeling of sunspot data, inProc. of the Twenty-Fourth Asilomar Conf. Sig., Sys. and Computers, p. 603–607, Nov. 1990.

  5. J. W. Grizzle and P. V. Kokotovic, Feedback linearization of sampled-data systems,IEEE Trans. Autom. Control 33 (9), 857–859, 1988.

    Google Scholar 

  6. D. J. Hill and P. J. Moylan, Connections between finite gain and asymptotic stability,IEEE Trans. Autom. Control AC-27, 931–936, 1982.

    Google Scholar 

  7. Steven M. Kay,Modern Spectral Estimation, Theory and Application, Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

  8. A. N. Kolmogorov, Interpolation und Extrapolation von stationaren zufallingen Folgen,Bull. Acad. Sci. USSR Ser. Math. 5, 3–14, 1941.

    Google Scholar 

  9. H. G. Lee, A. Arapostathis, and S. I. Marcus, Linearization of discrete time systems,Int. J. Control 45, 1803–1822, 1987.

    Google Scholar 

  10. S. Lawrence Marple, Jr.,Modern Spectral Estimation, Signal Processing, Prentice-Hall, Engle-wood Cliffs, NJ, 1987.

    Google Scholar 

  11. M. B. Priestly,Nonlinear and Non-Stationary Time Series Analysis, Academic Press, New York, 1988.

    Google Scholar 

  12. T. Subba Rao and M. M. Gabr, An introduction to bispectral analysis and bilinear time series models, in D. Brillinger, S. Fienberg, J. Gani, J. Hartigan, and K. Krickeberg, editors,Lecture Notes in Statistics, Springer-Verlag, Berlin and New York, 1984.

    Google Scholar 

  13. W. J. Rugh,Nonlinear System Theory: The Volterra/Wiener Approach, The Johns Hopkins University Press, Baltimore, MD, 1981.

    Google Scholar 

  14. I. W. Sandberg, Approximation theorems for discrete-time systems,IEEE Tr. Circuits and Systems 38, 564–566, 1991.

    Google Scholar 

  15. I. W. Sandberg, Uniform approximation with doubly finite Volterra series,IEEE Tr. Sig. Proc. 40 (6), 1438–1442, June 1992.

    Google Scholar 

  16. H. Tong,Nonlinear Time Series, A Dynamical System Approach, Oxford Science Publication, Oxford, 1990.

    Google Scholar 

  17. M. Vidyasagar, New relationships between input-output and Lyapunov stability,IEEE Trans. Autom. Control AC-27, 481–483, 1982.

    Google Scholar 

  18. M. Vidyasagar, New directions of research in nonlinear system theory,Proceedings of the IEEE 74 (8), 1060–1090, 1986.

    Google Scholar 

  19. H. Wold,A Study in the Analysis of Stationary Time Series, Almqvist & Wiksell, Stockholm, 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the NSF Grant MIP-9203296 and the Texas Advanced Technology Program Grant 009741-022.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, L.R., DeGroat, R.D. & Linebarger, D.A. Nonlinear AR modeling. Circuits Systems and Signal Process 14, 689–705 (1995). https://doi.org/10.1007/BF01213965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213965

Keywords

Navigation