Skip to main content
Log in

Fluorescence emission spectra of plant leaves and plant constituents

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

The UV-B radiation (e.g. 337 nm) induced blue fluorescence (BF) and red chlorophyll fluorescence spectra (RF) of green leaves from plants with different leaf structure were determined and the possible nature and candidates of the blue fluorescence emission investigated. The blue fluorescence BF is characterized by a main maximum in the 450 nm region and in most cases by a second maximum/shoulder in the 530 nm region. The latter has been termed green fluorescence GF. The red chlorophyll fluorescence RF, in turn, exhibits two maxima in the 690 and 730 nm region. In general, the intensity of BF, GF and RF emission is significantly higher in the lower than the upper leaf side. The ratio of BF to RF emission (F450/F690) seems to vary from plant species to plant species. BF and GF emission spectra appear to be a mixed signal composed of the fluorescence emission of several substances of the plant vacuole and cell wall, which may primarily arise in the epidermis. Leaves with removed epidermis and chlorophyll-free leaves, however, still exhibit a BF and GF emission. Candidates for the blue fluorescence emission (λ max near 450 nm) are phenolic substances such as chlorogenic acid, caffeic acid, coumarins (aesculetin, scopoletin), stilbenes (t-stilbene, rhaponticin), the spectra of which are shown. GF emission (λ max near 530 nm) seems to be caused by substances like the alkaloid berberine and quercetin. Riboflavine, NADPH and phyllohydroquinoneK 1 seem to contribute little to the BF and GF emission as compared to the other plant compounds. Purified naturalβ-carotene does not exhibit any blue fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beggs CJ, Wellmann E, Grisebach H (1986) Photocontrol of flavonoid biosynthesis. In: Photomorphogenesis in plants. Nijhoff, Dordrecht, pp 467–499

    Google Scholar 

  2. Buschmann C, Prehn H, Lichtenthaler HK (1984) Photoacoustic spectroscopy (PAS) and its application in photosynthesis research. Photosynth Res 5:29–46

    Google Scholar 

  3. Caldwell MM (1981) Plant responses to solar ultraviolett radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series 12 A, Physiological plant ecology, I. Springer, Berlin Heidelberg New York, pp 169–197

    Google Scholar 

  4. Chapelle EW, Wood FM, McMurtey YE, Newcomb WW (1984) Laser induced fluorescence of green plants. 1: a technique for remote detection of plant stress and species differentiation. Appl Opt 23:134–138

    Google Scholar 

  5. Chapelle EW, McMurtey YE, Kim MS (1990) Laser induced blue fluorescence in vegetation. In: Proc Internat Geoscience Remote Sensing Symposium IGARSS'90, vol 3. University of Maryland, Washington DC, pp 1919–1922

    Google Scholar 

  6. Förster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck & Rupprecht, Göttingen

    Google Scholar 

  7. French CS (1960) The chlorophylls in vivo and in vitro. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 5/1. Springer, Berlin Heidelberg New York, pp 252–297

    Google Scholar 

  8. Goulas Y, Moya I, Schmuck G (1990) Time-resolved spectroscopy of the blue fluorescence of spinach leaves. Photosynth Res 25:299–307

    Google Scholar 

  9. Hak R, Lichtenthaler HK, Rinderle U (1990) Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves. Radiat Environ Biophys 29:329–336

    Google Scholar 

  10. Harborne JB (1973) Phytochemical methods. Chapman and Hall, London

    Google Scholar 

  11. Harborne JB (1964) Biochemistry of phenolic compounds, chap 7, p 256; chap 13, part IV and V. Academic Press, New York

    Google Scholar 

  12. Harborne JB, Turner BL (1984) Plant chemosystematics, chap 7: Plant pigments. Academic Press, London, pp 128–179

    Google Scholar 

  13. Hegnauer R (1989 and 1990) Chemotaxonomie der Pflanzen, vols 8 and 9. Birkhäuser, Basel

    Google Scholar 

  14. Hermann K (1959) Caffeic and chlorogenic acid. Pharmazie 11:433–448

    Google Scholar 

  15. Hörhammer L, Scherm A (1955) Über das Vorkommen zyklischer Pflanzensäuren bei einigen Polygonaceen und Betulaceen. Arch Pharm 60:441–447

    Google Scholar 

  16. Interschick-Niebler E, Lichtenthaler HK (1981) Partition of phylloquinoneK1 between digitonin particles and chlorophyll-proteins of chloroplast membranes from Nicotiana tabacum. Z Naturforsch 36c:276–283

    Google Scholar 

  17. Karrer W (1958) Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel

    Google Scholar 

  18. Kohnen K (1908) Fluoreszenz (KAYSER Handbuch der Spektroskopie Bd. IV). Leipzig 1908

  19. Lichtenthaler HK (1968) Die Verbreitung der lipophilen Plastidenchinone in nichtgrünen Pflanzengeweben. Z Pflanzenphysiol 59:195–210

    Google Scholar 

  20. Lichtenthaler HK (1987) Chlorophylls and Carotenoids, the pigments of the photosynthetic biomembranes. Methods Enzymol 148:350–382

    Google Scholar 

  21. Lichtenthaler HK, Pfister K (1978) Praktikum der Photosynthese. Quelle & Meyer, Heidelberg

    Google Scholar 

  22. Lichtenthaler HK, Rinderle U (1988) Role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Cbem 19, [Suppl I]:S29-S85

    Google Scholar 

  23. Lichtenthaler HK, Stober F (1990) Laser-induced chlorophyll fluorescence and blue fluorescence of green vegetation. In: Proc 10th EARSeL Symposium Toulouse 1990, EARSeL, Boulogne-Billancourt, pp 234–241

    Google Scholar 

  24. Lichtenthaler HK, Stober F, Buschmann C, Rinderle U, Hak R (1990) Laser-induced chlorophyll fluorescence and blue fluorescence of plants. In: Proc Internat Geoscience Remote Sensing Symposium IGARSS '90 vol 3. University of Maryland, Washington DC, pp 1913–1918

    Google Scholar 

  25. Lichtenthaler HK, Karunen P, Grumbach. KH (1977) Determination of prenylquinones in green photosynthetically active moss and liver moss tissues. Physiol Plant 40:105–110

    Google Scholar 

  26. Lichtenthaler HK, Hak R, Rinderle U (1990) The chlorophyll fluorescence ratio F690/F735 in leaves of different chlorophyll content. Photosynth Res 25:259–298

    Google Scholar 

  27. Luckner M (1989) Secondary metabolism in microorganisms, plants and animals, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Politis J (1948) Sur la distribution de l'acide chlorogenic dans la famille des Solanacées at dans les organes de ces plantes. CR des Séances Acad, Paris 226:692–693

    Google Scholar 

  29. Theisen AF (1988) Fluorescence changes of a drying maple leaf observed in the visible and near-infrared. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 197–201

    Google Scholar 

  30. Van Brederode J, Steyns J (1985) UV-microscopic studies on the vacuolar changes caused by the flavone “aglycon” isovitexin inSilene pratensis plants. Protoplasma 128:59–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M., Stober, F. & Lichtenthaler, H.K. Fluorescence emission spectra of plant leaves and plant constituents. Radiat Environ Biophys 30, 333–347 (1991). https://doi.org/10.1007/BF01210517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210517

Keywords

Navigation