Skip to main content
Log in

Experimental characterization of permeability and fibre wetting for liquid moulding

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liquid moulding processes are unique in that resin is infused into a dry fibre preform. Appropriate wet-out of the reinforcing fibres is thus a necessity for the achievement of good composite properties. For this class of manufacturing methods, both macroscopic flow, as related to Darcy's Law and characterized by permeability, and microscopic flow, as related to fibre wet-out, are important. The current research investigates factors affecting permeability and fibre wet-out as related to liquid moulding. Specifically, it is shown that fabric permeability is dependent on the type of test fluid used. Surface tension and contact angle measurements indicate that interactions at the microscopic level between fibre and test fluid account for these differences in permeability. The investigation illustrates the competing nature of macroscopic and microscopic flow in liquid moulding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Naitove,Plast. Technol. 28 (1982) 79.

    Google Scholar 

  2. I. Sayama, I. Nomura, K. Tabei andS. Gotoh, in Proceedings of the Society of the Plastics Industry/Reinforced Plastics-Composites Institute 36th Annual Technical Conference, Cincinnati, OH (1981) p. 1.

  3. C. F. Johnson, N. G. Chavka, R. A. Jeryan, C. J. Morris andD. A. Babbington, in Proceedings of the Third Annual ASM/BSD Advanced Composites Conference, Detroit, MI (ASM International, Metals Park, Ohio, USA, 1987) p. 197.

    Google Scholar 

  4. C. F. Griffith, W. E. Harvill, R. R. Johnson andR. E. Bohlmann,Aerospace America 26 (1988) 28.

    Google Scholar 

  5. R. S. Parnas andF. R. Phelan, Jr.,SAMPE Quart. 22 (1991) 53.

    Google Scholar 

  6. S. Wu, “Polymer interface and adhesion” (Marcel Dekker, Inc., New York, 1982).

    Google Scholar 

  7. J. P. Coulter andS. I. Güçéri,J. Reinf. Plast. Compos. 7 (1988) 200.

    Google Scholar 

  8. M. V. Bruschke andS. G. Advani,Polym. Compos. 11 (1990) 398.

    Google Scholar 

  9. P. C. Carman,Trans. Inst. Chem. Eng. 15 (1937) 150.

    Google Scholar 

  10. R. J. Marshall andA. B. Metzner,Ind. Engng Chem. Fund. 6 (1967) 393.

    Google Scholar 

  11. Z. Kemblowski andM. Michniewicz,Rheol. Acta 18 (1979) 730.

    Google Scholar 

  12. E. M. Sparrow andA. L. Loeffler,AIChe J. 5 (1959) 325.

    Google Scholar 

  13. A. S. Sangani andA. Acrivos,Int. J. Multiphase Flow 8 (1982) 193.

    Google Scholar 

  14. R. E. Larson andJ. L. L. Higdon,J. Fluid Mech. 166 (1986) 449.

    Google Scholar 

  15. J. G. Williams, C. E. M. Morris andB. C. Ennis,Polym. Engng Sci. 14 (1974) 413.

    Google Scholar 

  16. A. S. Sangani andC. Yao,Phys. Fluids 31 (1988) 2435.

    Google Scholar 

  17. G. Q. Martin andJ. S. Son, in Proceedings of the Second Annual ASM/ESD Advanced Composites Conference, Detroit, MI (ASM International, Metals Park, Ohio, USA, 1986) p. 149.

    Google Scholar 

  18. R. Gauvin andM. Chibani,SAMPE Quart. 21 (1990) 52.

    Google Scholar 

  19. Y. R. Kim, S. P. McCarthy, J. P. Fanucci, S. C. Noet andC. Koppernaes,ibid. 22 (1991) 16.

    Google Scholar 

  20. S. J. Claus andA. C. Loos, in Proceedings of the American Society for Composites Fourth Annual Technical Conference, Blacksburg, Virginia (1989) p. 147.

  21. L. Trevino, K. Rupel, W. B. Young, M. L. Liou andL. J. Lee,Polym. Compos. 12 (1991) 20.

    Google Scholar 

  22. K. L. Adams, B. Miller andL. Rebenfeld,Polym. Engng Sci. 26 (1986) 1434.

    Google Scholar 

  23. R. S. Parnas, Center for Composite Materials Seminar Series, University of Delaware, Newark, DE (1992).

    Google Scholar 

  24. Fabric Handbook, Hexcel Corporation, Trevarno Division (1990).

  25. Unifilo U816 Product Information Sheet, Vetrotex, UK (1990).

  26. M. V. Bruschke, PhD Dissertation, Department of Mechanical Engineering, University of Delaware, Newark, DE (1992).

    Google Scholar 

  27. A. J. Kinloch, “Adhesion and adhesives: science and technology” (Chapman and Hall, London, 1987).

    Google Scholar 

  28. B. Miller, in “Surface Characteristics of Fibers and Textiles, Part II”, edited by M. J. Schick (Marcel Dekker, Inc., New York, 1977).

    Google Scholar 

  29. J. C. Berg, in “Composite Systems from Natural and Synthetic Polymers”, edited by L. Salmén, A. de Ruvo, J. C. Seferis and E. B. Stark (Elsevier Science Publishers, Amsterdam, 1986).

    Google Scholar 

  30. F. M. Fowkes,J. Phys. Chem. 67 (1963) 2538.

    Google Scholar 

  31. F. M. Fowkes, in “Treatise on Adhesion and Adhesives”, edited by R. L. Patrick (Marcel Dekker, Inc., New York, 1967).

    Google Scholar 

  32. D. H. Kaeble,J. Adhesion 2 (1970) 66.

    Google Scholar 

  33. Cahn Dynamic Contact Angle (DCA) Instruction Manual, Cahn Instruments, Inc., (1992).

  34. K. J. Ahn, J. C. Seferis andJ. C. Berg,Polym. Compos. 12 (1991) 146.

    Google Scholar 

  35. L. Skartsis, B. Khomani andJ. L. Kardos,SAMPE J. 28 (1992) 19.

    Google Scholar 

  36. E. P. Plueddemann, “Silane Coupling Agents” (Plenum Press, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steenkamer, D.A., McKnight, S.H., Wilkins, D.J. et al. Experimental characterization of permeability and fibre wetting for liquid moulding. J Mater Sci 30, 3207–3215 (1995). https://doi.org/10.1007/BF01209239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209239

Keywords

Navigation