Skip to main content

Compaction, Permeability and Flow Simulation for Liquid Composite Moulding of Natural Fibre Composites

  • Chapter
Manufacturing of Natural Fibre Reinforced Polymer Composites

Abstract

With the growing interest in developing high-performance natural fibre composites (NFRPs) for (semi-)-structural applications, researchers are increasingly considering liquid composite moulding (LCM) processes and investigating key manufacturing-related issues. Here, we critically review the literature on LCM of NFRPs. Consequently, we identify key findings concerning the reinforcement-related factors (namely, compaction and permeability) that influence, if not govern, the mould-filling stage during LCM of NFRPs. In particular, the differences in structure (physical and chemical) of natural and synthetic fibres, their semi-products (i.e. yarns and rovings) and their textiles are shown to have a perceptible effect on their processing via LCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • (18/06/2012). Samsara ‘eco surfboard’ features Biotex flax fibre. Retrieved 11/08/2014, from http://www.reinforcedplastics.com/view/26369/samsara-eco-surfboard-features-biotex-flax-fibre/

  • Cai Z (1992) Analysis of mold filling in RTM process. J Compos Mater 26:1310–1338

    Article  CAS  Google Scholar 

  • Campbell F (2003) Manufacturing processes for advanced composites. Elsevier, Oxford

    Google Scholar 

  • Carman P (1937) Fluid flow through granular beds. Trans Inst Chem Eng Lond 15:150–166

    CAS  Google Scholar 

  • Carus M (2011) Bio-composites: technologies, applications and markets. In: 4th international conference on sustainable materials, polymers and composites, Birmingham

    Google Scholar 

  • Carus M, Gahle C (2008) Natural fibre reinforced plastics – material with future. nova-Institut GmbH, Huerth

    Google Scholar 

  • Carus M, Eder A, Dammer L, Korte H, Scholz L, Essel R, Breitmayer E (2014) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global Markets 2012 and future trends. WPC/NFC Market Study 2014-03. nova-Institut GmbH, Hürth

    Google Scholar 

  • Chen B, Chou TW (1999) Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation. Compos Sci Technol 59:1519–1526

    Article  Google Scholar 

  • Chen B, Chou TW (2000) Compaction of woven-fabric preforms: nesting and multi-layer deformation. Compos Sci Technol 60:2223–2231

    Article  Google Scholar 

  • Chen B, Lang EJ, Chou TW (2001) Experimental and theoretical studies of fabric compaction behavior in resin transfer molding. Mater Sci Eng A 317(1–2):188–196

    Article  Google Scholar 

  • Correia N, Robitaille F, Long AC, Rudd CD, Simacek P, Advani SG (2005) Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos A: Appl Sci Manuf 36:1645–1656

    Article  Google Scholar 

  • Duflou J, Deng Y, Acker KV, Dewulf W (2012) Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bull 37:374–382

    Article  CAS  Google Scholar 

  • Dungan F, Sastry AM (2002) Saturated and unsaturated polymer flows: microphenomena and modeling. J Compos Mater 36(13):1581–1603

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibres: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  • Francucci G, Rodrıguez ES, Vazquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos A: Appl Sci Manuf 41:16–21

    Article  Google Scholar 

  • Francucci G, Rodrıguez ES, Vazquez A (2012a) Experimental study of the compaction response of jute fabrics in liquid composite molding processes. J Compos Mater 46(2):155–167

    Article  CAS  Google Scholar 

  • Francucci G, Vazquez A, Ruiz E, Rodrıguez ES (2012b) Capillary effects in vacuum-assisted resin transfer molding with natural fibers. Polym Compos 33:1593–1602

    Article  CAS  Google Scholar 

  • Francucci G, Vazquez A, Rodrıguez ES (2013) Key differences on the compaction response of natural and glass fiber preforms in liquid composite molding. Text Res J 82(17):1774–1785

    Article  Google Scholar 

  • Francucci G, Rodrıguez ES, Moran J (2014) Novel approach for mold filling simulation of the processing of natural fiber reinforced composites by resin transfer molding. J Compos Mater 48(2):191–200

    Article  Google Scholar 

  • Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibers. J Mater Sci 36:3715–3720

    Article  CAS  Google Scholar 

  • Gauvin R, Kerachni A, Fisa B (1994) Variation of mat surface density and its effect on permeability evaluation for RTM modelling. J Reinf Plast Compos 13:371–383

    Article  CAS  Google Scholar 

  • Goutianos S, Peijs T (2003) The optimisation of flax fibre yarns for the development of high-performance natural fibre composites. Adv Compos Lett 12(6):237–241

    Google Scholar 

  • Goutianos S, Peijs T, Nystrom B, Skrifvars M (2007) Textile reinforcements based on aligned flax fibres for structural composites. In: Composites innovation 2007 – improved sustainability and environmental performance, Barcelona

    Google Scholar 

  • Gutowski T, Cai Z, Bauer S, Boucher D, Kingery J, Wineman S (1987a) Consolidation experiments for laminate composites. J Compos Mater 21:650–669

    Article  CAS  Google Scholar 

  • Gutowski T, Morigaki T, Cai Z (1987b) The consolidation of laminate composites. J Compos Mater 21:172–188

    Article  CAS  Google Scholar 

  • Ho M, Wang H, Lee J, Hoc C, Lau K, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43(8):3549–3562

    Article  CAS  Google Scholar 

  • Kelly P, Umer R, Bickerton S (2004) Compaction of dry and wet fibrous materials during infusion processes. In: 36th international SAMPE technical conference, vol 36. San Diego, pp 785–797

    Google Scholar 

  • Kim Y, McCarthy SP, Fanucci JP (1991) Compressibility and relaxation of fiber reinforcements during composite processing. Polym Compos 12(1):13–19

    Article  Google Scholar 

  • Ko F, Kawabata S, Inoue M, Niwa M, Fossey S, Song JW (2001) Engineering properties of spider silk. In: MRS proceedings. vol 702. doi:10.1557/PROC-702-U1.4.1

  • Kong C, Park H, Lee H, Lee J (2014) Design of natural fiber composites chemical container using resin flow simulation of VARTML process. Int J Mater Mech Manuf 2(3):256–260

    Google Scholar 

  • Languri E, Moore RD, Masoodi R, Pillai KM, Sabo R (2010) An approach to model resin flow through swelling porous media made of natural fibers. In: 10th international conference on flow processes in composite materials (FPCM10), Monte Verità, Ascona

    Google Scholar 

  • Lewin M (2007) Handbook of fiber chemistry. CRC Press LLC, Boca Raton

    Google Scholar 

  • Li Y (2006) Processing of sisal fiber reinforced composites by resin transfer molding. Mater Manuf Process 21(2):181–190

    Article  CAS  Google Scholar 

  • Long A, Boisse P, Robitaille F (2005) Mechanical analysis of textiles. In: Long A (ed) Design and manufacture of textile composites. Woodhead Publishing Limited and CRC Press LLC, Cambridge

    Chapter  Google Scholar 

  • Lundquist L, Willi F, Leterrier Y, Manson JAE (2004) Compression behavior of pulp fiber networks. Polym Eng Sci 44(1):45–55

    Article  CAS  Google Scholar 

  • Madsen B (2004) Properties of plant fibre yarn polymer composites – an experimental study. PhD, Technical University of Denmark

    Google Scholar 

  • Manson J, Wakeman MD, Bernet N (2000) 2.16 – Composite processing and manufacturing – an overview. In: Kelly A, Zweben CH (eds) Comprehensive composite materials. Pergamon & Elsevier Science, Oxford (vol 2, Polymer matrix composites)

    Google Scholar 

  • Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. Am Inst Chem Eng J 56(9):2257–2267

    CAS  Google Scholar 

  • Masoodi R, Pillai KM (2011) 3 – Modeling the processing of natural fiber composites made using liquid composite molding. In: Pilla S (ed) Handbook of bioplastics and biocomposites engineering applications. Wiley, Hoboken

    Google Scholar 

  • Masoodi R, Pillai KM, Verhagen MA (2009) Flow modeling in natural-fiber preforms used in liquid composite molding. In: Joint American-Canadian international conference on composites, Newark

    Google Scholar 

  • Matsudaira M (2006) Fabric handle and its basic mechanical properties. J Text Eng 52(1):1–8

    Article  Google Scholar 

  • Matsudaira M, Qin H (1995) Features and mechanical parameters of a fabric’s compressional property. J Text Inst 86(3):476–486

    Article  Google Scholar 

  • Neuman S (1977) Theoretical derivation of Darcy’s law. Acta Mech 25:153–170

    Article  Google Scholar 

  • Nguyen V, Lagardère M, Cosson B, Park CH (2014) Experimental analysis of flow behavior in the flax fiber reinforcement with double scale porosity. In: 12th international conference on flow processing in composite materials (FPCM 12), Enschede

    Google Scholar 

  • Parnas R, Howard JG, Luce TL, Advani SG (1995) Permeability characterization. Part 1: a proposed standard reference fabric for permeability. Polym Compos 16(6):429–445

    Article  CAS  Google Scholar 

  • Pickering K (ed) (2008) Properties and performance of natural-fibre composites. CRC Press LLC, Boca Raton

    Google Scholar 

  • Pillai K, Advani G (1998) A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J Compos Mater 32(19):1753–1783

    Article  Google Scholar 

  • Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos A: Appl Sci Manuf 43(2):275–287

    Article  CAS  Google Scholar 

  • Reux F (2012) Worldwide composites market: main trends of the composites industry. In: 5th innovative composites summit – JEC ASIA 2012, Singapore

    Google Scholar 

  • Richardson M, Zhang ZY (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A: Appl Sci Manuf 31:1303–1310

    Article  Google Scholar 

  • Robitaille F, Gauvin R (1998a) Compaction of textile reinforcements for composites manufacturing. I: review of experimental results. Polym Compos 19(2):198–216

    Article  CAS  Google Scholar 

  • Robitaille F, Gauvin R (1998b) Compaction of textile reinforcements for composites manufacturing. III: reorganization of the fiber network. Polym Compos 20(1):48–61

    Article  Google Scholar 

  • Rodriguez E, Giacomelli F, Vazquez A (2004) Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements. J Compos Mater 38:259–268

    Article  Google Scholar 

  • Rodríguez E, Stefani PM, Vazquez A (2007) Effects of fibers’ alkali treatment on the resin transfer molding processing and mechanical properties of jute-vinylester composites. J Compos Mater 41:1729–1741

    Article  Google Scholar 

  • Schiefer H (1933) The compressometer, an instrument for evaluating the thickness, compressibility, and compressional resilience of textiles and similar materials. Bur Stand J Res 10(6):705–713

    Article  CAS  Google Scholar 

  • Shah D (2013a) Characterisation and optimisation of the mechanical performance of plant fibre composites for structural applications. PhD, University of Nottingham

    Google Scholar 

  • Shah D (2013b) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48(18):6083–6107

    Article  CAS  Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ, Licence P (2011) Mechanical characterization of vacuum infused thermoset matrix composites reinforced with aligned hydroxyethylcellulose sized plant bast fibre yarns. In: 4th international conference on sustainable materials, polymers and composites, Birmingham

    Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ, Licence P (2012a) The tensile behavior of off-axis loaded plant fiber composites: an insight on the non-linear stress–strain response. Polym Compos 33(9):1494–1504

    Article  CAS  Google Scholar 

  • Shah D, Schubel PJ, Licence P, Clifford MJ (2012b) Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos Sci Technol 72:1909–1917

    Article  CAS  Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ (2013a) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B 52:172–181

    Article  CAS  Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ (2013b) Modelling the effect of yarn twist on the tensile strength of unidirectional plant fibre yarn composites. J Compos Mater 47(4):425–436

    Article  Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ, Licence P (2013c) Mechanical property characterization of aligned plant yarn reinforced thermoset matrix composites manufactured via vacuum infusion. Polym Plast Technol Eng 53(3):239–253. doi:10.1080/03602559.2013.843710

    Article  Google Scholar 

  • Shah D, Porter D, Vollrath F (2014a) Opportunities for silk textiles in reinforced biocomposites: studying through-thickness compaction behaviour. Compos A: Appl Sci Manuf 62:1–10

    Article  CAS  Google Scholar 

  • Shah D, Schubel PJ, Clifford MJ, Licence P (2014b) Mechanical property characterization of aligned plant yarn reinforced thermoset matrix composites manufactured via vacuum infusion. Polym Plast Technol Eng 53:239–253

    Article  CAS  Google Scholar 

  • Summerscales J, Dissanayake N, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 2 – composites. Compos A: Appl Sci Manuf 41(10):1336–1344

    Article  Google Scholar 

  • Sun Z, Zhao X, Ma J (2014) Capillary effect in the impregnation of jute fiber mat reinforced polypropylene composites. J Compos Mater 48:447–453

    Article  CAS  Google Scholar 

  • Umer R, Bickerton S, Fernyhough A (2007) Characterising wood fibre mats as reinforcements for liquid composite moulding processes. Compos Part A 38:43–448

    Article  Google Scholar 

  • Umer R, Bickerton S, Fernyhough A (2008) Modelling the application of wood fibre reinforcements within liquid composite moulding processes. Compos Part A 39:624–639

    Article  Google Scholar 

  • Umer R, Bickerton S, Fernyhough A (2011) The effect of yarn length and diameter on permeability and compaction response of flax fibre mats. Compos A: Appl Sci Manuf 42:723–732

    Article  Google Scholar 

  • van Wyk C (1946) 20 – Note on the compressibility of wool. J Text Inst Trans 37(12):T285–T292

    Article  Google Scholar 

  • Winson C (1932) 27 – Report on a method for measuring the resilience of wool. J Text Inst Trans 23(12):T386–T393

    Article  Google Scholar 

  • Witten E, Jahn B (2013) Composites market report 2013: market developments, trends, challenges and opportunities. Industrievereinigung Verstärkte Kunststoffe (Federation of Reinforced Plastics) and Carbon Composites eV, Frankfurt

    Google Scholar 

  • Xue D, Miao M, Hu H (2011) Permeability anisotropy of flax nonwoven mats in vacuum-assisted resin transfer molding. J Text Inst 102(7):612–620

    Article  Google Scholar 

  • Yang J, Xiao J, Zeng J, Jiang D, Peng C (2012) Compaction behavior and part thickness variation in vacuum infusion molding process. Appl Compos Mater 19:443–458

    Article  CAS  Google Scholar 

  • Zhang K, Si FW, Duan HL, Wang J (2010) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6:2165–2171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshil U. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shah, D.U., Clifford, M.J. (2015). Compaction, Permeability and Flow Simulation for Liquid Composite Moulding of Natural Fibre Composites. In: Salit, M., Jawaid, M., Yusoff, N., Hoque, M. (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-07944-8_4

Download citation

Publish with us

Policies and ethics