Skip to main content
Log in

UV-mediated cataractogenesis: A radical perspective

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

A number of epidemiologic and experimental studies indirectly support the idea that solar ultraviolet radiation may be cataractogenic. However, the physical and cellular processes which might be involved in such cataractogenesis are by no means clear. Because a major consequence of the UV irradiation of oxygenated organic matter is the production of activated oxygen species, the involvement of oxidants has been suspected to be of importance. However, because the lens may normally exist in an hypoxic or even anoxic environment, the extent of availability of oxygen for such reactions is presently unknown. So also are the possible mechanisms through which putative UV damage of the lens might eventuate in cataract. In addition to possible rapid and direct lethal damage to lens epithelium, possible cumulative damage to both lenticular DNA and proteins may occur. Furthermore, UV radiation has the potential to photolytically destroy light-sensitive nutrients and to generate damaging oxidants through interaction with ferruginous compounds. Given that Nature has probably provided the lens with substantial protective devices to ward off damaging effects of UV light, it is still an open question as to whether solar radiation contributes to cataract formation and, if so, by what mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinsey VE. Spectral transmission of the eye to ultraviolet radiations. Arch Ophthalmol 1948; 39: 508–13.

    CAS  Google Scholar 

  2. Bachem A. Ophthalmic ultraviolet action spectrum. Am J Ophthalmol 1956; 41: 969–80.

    PubMed  CAS  Google Scholar 

  3. Parrish JA, Anderson RR, Urbach F, Pitts, D. UV-A: Biological effects of ultraviolet radiation with emphasis on human responses to long-wave ultraviolet. New York: Plenum Press, 1978.

    Google Scholar 

  4. Jose JG. Posterior cataract induction by UV-B radiation in albino mice. Exp Eye Res 1986; 42: 11–20.

    Article  PubMed  CAS  Google Scholar 

  5. Hightower K, McCready J. Mechanisms involved in cataract development following near-ultraviolet radiation of cultured lenses. Curr Eye Res 1992; 11: 679–89.

    Article  PubMed  CAS  Google Scholar 

  6. Faust BC, Anastasio C, Allen JM, Arakaki T. Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters. Science 1993; 260: 73–75.

    Article  PubMed  CAS  Google Scholar 

  7. Webb RB, Brown MS. Action spectra for oxygen-dependent and independent inactivation ofEscherichia coli WP2x from 254 to 460 nm. Photochem Photobiol 1979; 29: 407–409.

    Article  PubMed  CAS  Google Scholar 

  8. Ananthaswamy HN, Hartman PS, Eisenstark A. Synergistic lethality of phage T7 by near-UV radiation and hydrogen peroxide: an action spectrum. Photochem Photobiol 1979; 29: 53–56.

    Article  CAS  Google Scholar 

  9. Zoeller RA, Olivier OH, Raetz CRH. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 1988; 263: 11590–96.

    PubMed  CAS  Google Scholar 

  10. Eisenstark A, Perrot G. Catalase has only a minor role in protection against nearultraviolet radiation damage in bacteria. Mol Gen Genet 1987; 207: 68–72.

    Article  PubMed  CAS  Google Scholar 

  11. Kleiman NJ, Wang RR, Spector A. Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells. Mut Res 1990; 240: 35–45.

    Article  CAS  Google Scholar 

  12. Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet 1992; 42: 68–84.

    Article  PubMed  CAS  Google Scholar 

  13. Traboulsi EI, DeBecker I, Maumenee IH. Ocular findings in Cockayne syndrome. Am J Ophthalmol 1992; 114: 579–83.

    PubMed  CAS  Google Scholar 

  14. Cleaver JE, Kraemer KH. Xeroderma pigmentosum. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease. Vol. II, Sixth Ed. New York: McGraw-Hill, 1989: 2949–71.

    Google Scholar 

  15. Rebora A, Crovato F. PIBI(D)S syndrome: Trichothiodystrophy with xeroderma pigmentosum (group D) mutation. J Am Acad Dermatol 1987; 16: 940–47.

    Article  PubMed  CAS  Google Scholar 

  16. Bhatia RP, Patel R, Dubey B. Senile cataract and glucose-6-phosphate dehydrogenase deficiency in Indians. Trop Geogr Med 1990; 42: 349–51.

    PubMed  CAS  Google Scholar 

  17. Meloni T, Carta F, Forteleoni G, Carta A, Ena F, Meloni GF. Glucose-6-phosphate dehydrogenase deficiency and cataract of patients in northern Sardinia. Am J Ophthalmol 1990; 110: 661–64.

    PubMed  CAS  Google Scholar 

  18. Cohn J, Carter N, Warburg M. Glucose-6-phosphate dehydrogenase deficiency in a native Danish family. Scand J Haematol 1979; 23: 403–409.

    PubMed  CAS  Google Scholar 

  19. Westring DN, Pisciotta AV. Anemia, cataracts and seizures in a patient with glucose-6-phosphate dehydrogenase deficiency. Arch Intern Med 1966; 118: 385–90.

    Article  PubMed  CAS  Google Scholar 

  20. Moro F, Gorgone G, Li-Volti S, Cavallaro N, Faro S, Curreri R, Mollica F. Glucose-6-phosphate dehydrogenase deficiency and incidence of cataract in Sicily. Ophthalmic Paediatr Genet 1985; 5: 197–203.

    Article  PubMed  CAS  Google Scholar 

  21. Eaton JW. Acatalasemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease. Vol. II, Sixth Ed. New York: McGraw-Hill, 1989: 1551–61.

    Google Scholar 

  22. Eaton JW. Is the lens canned? Free Rad Biol Med 1991; 11: 207–13.

    Article  PubMed  CAS  Google Scholar 

  23. Wolff SP, Wang GM, Spector A. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicityin vitro. Exp Eye Res 1987; 45: 777–89.

    Article  PubMed  CAS  Google Scholar 

  24. Omerod CD, Edelstein MAC, Schmidt GL, Juarez RS, Finegold SM, Smith RE. The intraocular environment and experimental anaerobic bacterial endophthalmitis. Arch Ophthalmol 1987; 105: 1571–75.

    Google Scholar 

  25. Barr RE, Roetman EL. Oxygen gradients in the anterior chamber of anesthetized rabbits. Invest Ophthalmol 1974; 13: 386–89.

    Google Scholar 

  26. Branda RF, Eaton JW. Skin color and nutrient photolysis: An evolutionary hypothesis. Science 1978; 201: 625–26.

    Article  PubMed  CAS  Google Scholar 

  27. Van der Zee J, Krootjes BBH, Chignell CF, Dubbelman TMAR, Van Steveninck J. Hydroxyl radical generation by a light-dependent fenton reaction. Free Rad Biol Med 1993; 14: 105–13.

    Article  PubMed  Google Scholar 

  28. Garland D. Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: A hypothesis. Exp Eye Res 1990; 50: 677–82.

    Article  PubMed  CAS  Google Scholar 

  29. McGahan MC. Does the lens serve as a sink for iron during inflammation? Exp Eye Res 1992; 54: 525–30

    Article  PubMed  CAS  Google Scholar 

  30. Aubailly M, Santus R, Salmon S. Ferrous iron release from ferritin by ultraviolet-A radiations. Photochem Photobiol 1991; 54: 769–73.

    Article  PubMed  CAS  Google Scholar 

  31. Kramer GF, Ames BN. Oxidative mechanisms of toxicity of low-intensity near UV-light. J Bacteriol 1987; 169: 2259–66.

    PubMed  CAS  Google Scholar 

  32. Cheng E, Kellog EW, Packer L. Photoinactivation of catalase. Photochem Photobiol 1981; 34: 125–29.

    PubMed  CAS  Google Scholar 

  33. Bhuyan KC, Bhuyan DK. Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye. Biochim Biophys Acta 1977; 497: 641–45.

    PubMed  CAS  Google Scholar 

  34. Giblin FJ, McCready JP, Kodama T, Reddy VN. A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp Eye Res 1984; 38: 87–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, J.W. UV-mediated cataractogenesis: A radical perspective. Doc Ophthalmol 88, 233–242 (1995). https://doi.org/10.1007/BF01203677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203677

Key words

Navigation