Skip to main content
Log in

The genetic algorithm applied to stiffness maximization of laminated plates: review and comparison

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The design of laminated structures is highly tailorable owing to the large number of available design variables, thereby requiring an optimization method for effective design. Furthermore, in practice, the design problem translates to a discrete global optimization problem which requires a robust optimization method such as the genetic algorithm. In this paper, the genetic algorithm, based on the real variable coding, is applied to the strain energy minimization of rectangular laminated composite plates. The results for both a point load and uniformly distributed load compare well with those achieved using trajectory methods for continuous global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, J.S.; Elwakeil, O.A.; Chahande, A.I.; Hsieh, C.C. 1995: Global optimization methods for engineering applications: a review.Struct. Optim. 9, 137–159

    Article  Google Scholar 

  • Arora, J.S.; Huang, M.W.; Hsieh, C.C. 1994: Methods for optimization of nonlinear problems with discrete variables: a review.Struct. Optim. 8, 69–85

    Article  Google Scholar 

  • De Jong, K.A. 1975:An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. Dissertation, Dept. of Computer Science, Univ. of Michigan

  • Galante, M. 1996: Genetic algorithms as an approach to optimize real-world trusses.Int. J. Num. Meth. Engrg. 39, 361–382

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, D.E. 1989:Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley

    MATH  Google Scholar 

  • Groenwold, A.A.; Snyman, J.A.; Stander, N. 1996: Modified trajectory method for practical global optimization problems.AIAA J. 34, 2126–2131

    Article  MATH  Google Scholar 

  • Groenwold, A.A.; Stander, N.; Snyman, J.A. 1997: A regional genetic algorithm for the discrete optimal design of truss structures. (submitted)

  • Haftka, R.T.; Gürdal, Z. 1992:Elements of structural optimization, 3-rd ed. Dordrecht: Kluwer

    Book  MATH  Google Scholar 

  • Hajela, P. 1990: Genetic search-an approach to the nonconvex optimization problem.AIAA J. 28, 1205–1210

    Article  Google Scholar 

  • Hajela, P.; Shih, C.J. 1989: Optimal design of laminated composites using a modified mixed integer and discrete programming algorithm.Comp. & Struct. 32, 213–221

    Article  MATH  Google Scholar 

  • Holland, J.H. 1975:Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press

    Google Scholar 

  • Huang, M.W.; Arora, J.S. 1995: Engineering optimization with discrete variables.Proc. 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. & AIAA/ASME Adaptive Structures Forum (held in New Orleans, LA), Paper No. AIAA-95-1333-CP, pp. 1475–1485

  • Kam, T.Y.; Snyman, J.A. 1991: Optimal design of laminated composite plates using a global optimization technique.Comp. & Struct. 19, 351–370

    Article  Google Scholar 

  • Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. 1983: Optimization by simulated annealing.Science 220, 671–680

    Article  MATH  MathSciNet  Google Scholar 

  • Kogiso, N.; Watson, L.T.; Gürdal, Z.; Haftka, R.T. 1994: Genetic algorithms with local improvement for composite laminate design.Struct. Optim. 7, 207–218

    Article  Google Scholar 

  • Le Riche, R.; Haftka, R.T. 1993: Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm.AIAA J. 31, 951–956

    Article  MATH  Google Scholar 

  • Michalewicz, Z. 1992:Genetic algorithms+data structures=evolution programs. Berlin, Heidelberg, New York: Springer

    Book  MATH  Google Scholar 

  • Nagendra, S.; Haftka, R.T.; Gürdal, Z. 1993: Design of a blade stiffened composite panel by a genetic algorithm.Proc. 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. and AIAA/ASME Adaptive Structures Forum (held in La Jolla, CA), Paper No AIAA-93-1586-CP, pp. 2448–2436

  • Ponslet, E.; Haftka, R.T.; Cudney, H.H. 1993: Optimal placement of tuning masses on truss structures by genetic algorithms.Proc. 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. and AIAA/ASME Adaptive Structures Forum (held in La Jolla, CA), Paper No. AIAA-93-1586-CP, pp. 2448–2457

  • Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. 1988:Numerical recipes in C: the art of scientific computing. New York: Cambridge University Press

    MATH  Google Scholar 

  • Soremekun, G.; Gürdal, Z.; Haftka, R.T.; Watson, L.T. 1996: Improving genetic algorithm efficiency and reliability in the design and optimization of composite structures.6th AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization Part 1 (held in Bellevue, WA), Paper No. AIAA-96-4024-CP, pp. 372–383.

  • Tauchert, T.R.; Adibhatla, S. 1984: Design of laminated plates for maximum stiffness.J. Comp. Mat. 18, 58–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potgieter, E., Stander, N. The genetic algorithm applied to stiffness maximization of laminated plates: review and comparison. Structural Optimization 15, 221–229 (1998). https://doi.org/10.1007/BF01203535

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203535

Keywords

Navigation