Skip to main content
Log in

Colored focal visual evoked potentials by cathode ray tube versus scanning laser ophthalmosope

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We compared the focal visual evoked potentials obtained in 52 young subjects with normal vision, evoked by means of three alternating black/color checkerboards generated by a trichromic cathode ray tube (dominant wavelength, 514 nm; colorimetric purity, 0.45) and by means of a scanning laser ophthalmoscope (argon laser beam, 514 nm; colorimetric purity, ≈ 1). These three checkerboards, with an area of 3.5° × 3.5° (stimulating the fovea), then with an area of 3.5° × 3.5° with a central exclusion of 1.5° × 1.5° (stimulating the perifoveola) and finally with an area of 1.5° × 1.5° (stimulating the foveola) were presented within a field (8° × 8°) of homogeneous luminance of 170 cd/m2 and 1500 cd/m2, respectively. Their check sizes were 30′, with a reversal temporal frequency of 0.75 Hz. The transient focal visual evoked potentials recorded with these three stimuli generated by the two types of stimulators were clearly detected for at least 85% of subjects. Their characteristics (waveform, amplitude and culmination times of the different waves) were comparable, regardless of the stimulator used (cathode ray tube or scanning laser ophthalmoscope). These results suggest that, under these various conditions of luminance and colorimetric purity, the neurophysiologic circuits tested function in identical ways. The focal visual evoked potential signs, now clearly defined by means of stimuli generated by cathode ray tubes, therefore apparently can be applied to the focal visual evoked potential evoked by stimuli generated by the scanning laser ophthalmoscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FVEP:

focal visual evoked potential

SLO:

scanning laser ophthalmoscope

References

  1. Adachi-Usami E. Stimulus field, element size and human visually evoked cortical potentials. Doc Ophthalmol Proc Series 1978; 23: 227–35.

    Google Scholar 

  2. Röver J, Schaubele G, Berndt K. Macula and periphery: Their contribution to the visual evoked potentials (VEP) in man. Albrecht von Graefes Arch Klin Ophthalmol 1980; 214: 47–51.

    Google Scholar 

  3. Katsumi O, Hirose T, Tanino T. Effect of stimulus field size localization on the binocular pattern reversal visual evoked response. Doc Ophthalmol 1988; 69: 293–305.

    PubMed  Google Scholar 

  4. Harter MR. Evoked cortical responses to checkerboard patterns: Effect of check—size as a function of retinal eccentricity. Vision Res 1970; 10: 1365–76.

    PubMed  Google Scholar 

  5. Teping C, Groneberg A. Monocularly evoked cortical potentials to simultaneous stimulation of central and peripheral human retina with different patterns. Doc Ophthalmol Proc Series 1981; 27: 305–13.

    Google Scholar 

  6. Röver J, Bach M. Visual evoked potentials to various check patterns. Doc Ophthalmol 1985; 59: 143–7.

    PubMed  Google Scholar 

  7. Sakaue H, Katsumi O, Mehta M, Hirose T. Simultaneous pattern reversal ERG and VER recordings: Effect of stimulus field and central scotoma. Invest Ophthalmol Vis Sci 1990; 31: 506–11.

    PubMed  Google Scholar 

  8. Buquet C, Charlier J, Toucas S, Quéré M. Comparaison des techniques d'électrooculographie et de traitement d'images pour l'enregistrement des mouvements oculaires en clinique ophtalmologique. Innov Tech Biol Med 1989; 10: 542–52.

    Google Scholar 

  9. Webb RH, Hughes GW, Pomerantzeff O. Flying spot TV ophthalmoscope. Appl Opt 1980; 19: 2991–7.

    Google Scholar 

  10. Corno F, Lamare M, Rodier JC, Simon J. Scanning laser ophthalmoscope. In: Fiorentini A, Guyton DL, Siegel IM, eds. Proceedings of the Third Annual Symposium Tirrenia Italy. Advances in diagnostic visual optics Berlin Springer Verlag, 1987: 114–8.

  11. Van de Velde FJ, Jalkh AE, Katsumi O, Hirose T, Timberlake GT, Schepens CL. Clinical scanning laser ophthalmoscope applications. An overview. In: Nasemann JE, Burck Raw, eds. Scanning laser ophthalmoscopy and tomography. München Quint'Essenz, 1990; 2: 35–47.

    Google Scholar 

  12. Katsumi O, Timberlake GT, Hirose T, Van de Velde FJ, Sakaue H. Recording pattern visual evoked response with the scanning laser ophthalmoscope. Acta Ophthalmol, 1989; 67: 243–8.

    Google Scholar 

  13. Katsumi O, Van de Velde FJ, Mehta M, Hirose T. Topographical analysis of peripheral vs central retina pattern reversal visual evoked response and the scanning laser ophthalmoscope. Acta Ophthalmol, 1991; 69: 596–602.

    Google Scholar 

  14. Teping C, Wolf S, Schippers V, Plesch A, Silny J. Anwendung des Scanning Laser-Ophthalmoskops zur Registrierung des Muster—ERG und VECP, Klin Monatsbl Augenheilkd 1989; 195: 203–6.

    PubMed  Google Scholar 

  15. Le Gargasson JF, Lamare M, Rigaudière F, Corno F, Grall Y, Charlier J, Simon J. Ophtalmoscope laser à balayage et potentiels évoqués visuels. J Med Nucl Biophys 1989; 13: 343–54.

    Google Scholar 

  16. Li L, Rosenshein JS. Comparison of pattern—reversal visual evoked potentials using white stimuli from a scanning laser ophthalmoscope and from a standard CRT. Presented at the Second International Conference: Scanning Laser Ophthalomoscopy, Tomography & Microscopy; Eye Research Institute, Boston Mass; November 1990.

    Google Scholar 

  17. Cohen-Sabban J, Rodier JC, Roussel A, Simon J. Ophtalmoscopie par balayage optique. Innov Technol Biol Med 1984; 5: 116–28.

    Google Scholar 

  18. Klingbeil U, Plesch A, Bille J. Fundus imaging by a microprocessor controlled laser scanning device. Opt Biomed Sci 1982; 31: 201–4.

    Google Scholar 

  19. Katsumi O, Hirose T, Tsukada T. Effect of number of elements and size of stimulus field on recordability of pattern reversal visual evoked response. Invest Ophthalmol Vis Sci 1988; 29: 922–7.

    PubMed  Google Scholar 

  20. Regan D. Steady—state evoked potentials. J Opt Soc Am 1977; 67: 1475–89.

    PubMed  Google Scholar 

  21. Hess RF, Snowden RJ. Temporal properties of human visual filters. Numbers shapes and spatial covariation. Vision Res 1992; 32: 47–59.

    PubMed  Google Scholar 

  22. Ikeda H, Wright MJ. Outer excitatory (‘disinhibition’) surround to receptive fields of retinal ganglion cells. Physiol Lond 1972; 224: 26–7.

    Google Scholar 

  23. Ikeda H, Wright MJ. The outer disinhibitory surround of the retinal ganglion cell receptive field. Physiol Lond 1972; 226: 511–44.

    Google Scholar 

  24. Hammond P. Spatial organization of receptive fields of LGN neurones. Physiol Lond 1972; 222: 53–4.

    Google Scholar 

  25. Hammond P. Contrast in spatial organization of receptive fields at geniculate and retinal levels: Centre surround and outer surround. Physiol Lond 1973; 228: 115–37.

    Google Scholar 

  26. Li CY, He ZJ. Effects of patterned backgrounds on responses of lateral geniculate neurons in cats Exp Brain Res 1987; 67: 16–26.

    PubMed  Google Scholar 

  27. Li CY, Zhou YX, Pei X, Qiu FT, Tang CQ, Xu XZ. Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells. Vision Res. 1992; 32: 219–28.

    PubMed  Google Scholar 

  28. Chiba Y. Studies on the visual evoked cortical potentials to checkerboard pattern reversal stimuli, Report 2: Central serous chorioretinopathy. Folia Ophthalmol Jpn 1976; 27: 339–47.

    Google Scholar 

  29. Chiba Y, Kanaizuka D, Adachi—Usami E. Psychophysical and VECP examinations of emmetropia, myopia, hypermetropia and aphakia. Doc Ophthalmol Proc Series 1977; 13: 47–55.

    Google Scholar 

  30. Bartl G, Van Lith GHM, Marle GW. Cortical potentials evoked by TV pattern reversal stimulus varying check size and position of the stimulus field Br J Ophthalmol 1978; 62: 216–9.

    PubMed  Google Scholar 

  31. Bartl G, Van Lith GHM, Marle GW. Cortical potentials evoked by TV pattern reversal stimulus varying check size and position of the stimulus field. Ophthalmol Res. 1978; 10: 295–301.

    Google Scholar 

  32. Adachi E, Chiba J. Visual resolution at the central retina detected with human visually evoked cortical potential. Acta Soc Ophthalmol Jpn 1979; 83: 1036–42.

    Google Scholar 

  33. Rigaudière F. Potentiels évoqués visuels et stimulations structurées: Aspects théoriques et applications à des damiers alternants colorés de divers contrastes chromatiques et lumineux. Université Paris VII, U.F.R. Lariboisière—Saint—Louis, Thèse Médecine, 1985.

  34. Grall Y, Rigaudière F, Fromont G, Le Gargasson JF. Méthodes de stimulation et d'analyse des potentiels évoqués visuels à la couleur. J Biophys Bioméca 1986; 10: 119–29.

    Google Scholar 

  35. Lesèvre N. Chronotopographical study of the pattern-evoked response and binocular summation Ann NY Acad Sci 1982; 388: 635–41.

    PubMed  Google Scholar 

  36. Jeffreys DA. The physiological significance of pattern visual evoked potentials. In: Desmedt JE, Ed. VEP in Man. Oxford: Clarendon Press, 1977; 6: 134–67.

    Google Scholar 

  37. Spekreijse H, Estevez O, Reits D. Visual evoked potentials and the physiological analysis of visual processes in Man. In: Desmedt JE, Ed. VEP in Man Oxford: Clarendon Press, 1977; 2: 16–89.

    Google Scholar 

  38. Halliday AM. Cortical EPs in man: Clinical observations. In: Spatial contrast. Report of a workshop. Amsterdam: North—Holland, 1977: 84–9.

    Google Scholar 

  39. Cant BR, Hume AL, Shaw NA. Effects of luminance on the pattern visual evoked potential in multiple sclerosis. EEG Clin Neurophysiol 1978; 45: 496–504.

    Google Scholar 

  40. Van der Tweel LH, Estevez O, Cavonius CR. Invariance of the contrast evoked potential with changes in retinal illuminance. Vision Res 1979; 19: 1283–7.

    PubMed  Google Scholar 

  41. Tobimatsu S, Celesia GG, Cone SB. Effects of pupil diameter and luminance changes on pattern electroretinograms and visual evoked potentials. Clin Vision Sci 1988; 2: 293–302.

    Google Scholar 

  42. Nguyen—Legros J. Les neurotransmetteurs de la rétine. Med Sci 1987; 3: 198–206.

    Google Scholar 

  43. Piccolino M. La vision et la dopamine. Recherche 1988; 19: 1456–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigaudière, F., Le Gargasson, J.F., Guez, J.E. et al. Colored focal visual evoked potentials by cathode ray tube versus scanning laser ophthalmosope. Doc Ophthalmol 84, 1–17 (1993). https://doi.org/10.1007/BF01203278

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203278

Key words

Navigation