Skip to main content
Log in

n-distributivity, dimension and Carathéodory's theorem

  • Published:
algebra universalis Aims and scope Submit manuscript

Abstract

A. Huhn proved that the dimension of Euclidean spaces can be characterized through algebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of\(\mathbb{E}^n \) isn+1-distributive but notn-distributive. In this paper his result is generalized for a class of algebraic lattices generated by their completely join-irreducible elements. The lattice theoretic form of Carathéodory's theorem characterizesn-distributivity in such lattices. Several consequences of this result are studied. First, it is shown how infiniten-distributivity and Carathéodory's theorem are related. Then the main result is applied to prove that for a large class of lattices beingn-distributive means being in the variety generated by the finiten-distributive lattices. Finally,n-distributivity is studied for various classes of lattices, with particular attention being paid to convexity lattices of Birkhoff and Bennett for which a Helly type result is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M.,Combinatorial Theory, Springer Verlag, Berlin, 1979.

    Google Scholar 

  2. Bennett, M. K.,Separation condition on convexity lattices, in: S. Comer (ed.),Universal Algebra and Lattice Theory, Springer Lecture Notes in Mathematics,1149 (1984), 22–36.

  3. Bennett, M. K.,Biatomic lattices, Algebra Universalis24 (1987), 60–73.

    Google Scholar 

  4. Bennett, M. K. andBirkhoff, G.,Convexity lattices, Algebra Universalis20 (1985), 1–26.

    Google Scholar 

  5. Bennett, M. K. andBirkhoff, G.,The convexity lattice of a poset, Order2 (1985), 223–242.

    Google Scholar 

  6. Crawley, P. andDilworth, R.,Algebraic Theory of Lattices, Prentice-Hall, 1973.

  7. Czéédli, G.,On the 2-distributivity of sublattice lattices, Acta Math. Acad. Sci. Hungar.36 (1980), 49–55.

    Google Scholar 

  8. Dietrich, B.,A circuit set characterization of antimatroids, J. Combin. Th. (B)43 (1987), 314–321.

    Google Scholar 

  9. Day, A.,Dimension equations in modular lattices, Algebra Universalis22 (1986), 14–26.

    Google Scholar 

  10. Edelman, P. H. andJamison, R. E.,The theory of convex geometries, Geom. Dedicata19 1985), 247–270.

    Google Scholar 

  11. Faigle, U.,Frink's theorem for modular lattices, Arch. Math.36 (1981), 179–182.

    Google Scholar 

  12. Huhn, A.,Schwach distributive Verbände, Acta Sci. Math. (Szeged)33 (1972), 297–305.

    Google Scholar 

  13. Huhn, A.,On non-modular n-distributive lattices: Lattice of convex sets, Acta Sci. Math. (Szeged)52 (1987), 35–45.

    Google Scholar 

  14. Grätzer, G.,General Lattice Theory, Academic Press, New York, 1978.

    Google Scholar 

  15. Johnstone, P. T.,Stone Spaces, Cambridge University Press, 1982.

  16. Kelly, D. andRival, I.,Planar lattices, Canadian J. Math.27 (1975), 635–665.

    Google Scholar 

  17. Kelly, D. andTrotter, W. T.,Dimension theory for ordered setes, in: I. Rival (ed.),Ordered Sets, D. Reidel Publishing Company, 1981, pp. 171–212.

  18. Korte, B., Lovász, L. andSchrader, R.,Greedoids, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  19. Libkin, L.,On the characterization of non-modular n-distributive lattices, Preprint No. 18, Mathematical Institute, Budapest, 1989.

    Google Scholar 

  20. Libkin, L.,Parallel axiom in convexity lattices, Periodica Mathematica Hungarica24 (1992), 1–12.

    Google Scholar 

  21. Libkin, L. andMuchnik, I.,On a subsemilattice-lattice of a semilattice, MTA SZTAKI Közlemények39 (1988), 101–110.

    Google Scholar 

  22. Libkin, L. andMuchnik, I.,Halfspaces and hyperplanes in convexity lattices, Preprint No. 51, Mathematical Institute, Budapest, 1989.

    Google Scholar 

  23. McKenzie, R., McNulty, G. andTaylor, W.,Algebras, Lattices, Varieties, volulme I, Wadsworth and Brooks/Cole, Monterey, California, 1987.

    Google Scholar 

  24. Mislove, M.,When are order scattered and topologically scattered the same? Ann. Discrete Math.23 (1984), 61–80.

    Google Scholar 

  25. Nation, J. B.,An approach to lattice varieties of finite height, Algebra Universalis27 (1990), 521–543.

    Google Scholar 

  26. Palfy, P. P.,Moldular subalgebra lattices, Algebra Universalis27 (1990), 220–229.

    Google Scholar 

  27. Rockafellar, R. T.,Convex Analysis, Princeton University Press, 1970.

  28. Romanowska, A. andSmith, J. D. H.,Modal Theory: An Algebraic Approach to Order, Geometry and Convexity, Heldermann Verlag, Berlin, 1985.

    Google Scholar 

  29. Richter, G.,On the structure of lattices in which every element is a join of join-irreducible elements, Periodica Mathematica Hungarica13 (1982), 47–69.

    Google Scholar 

  30. Soltan, V. P.,Introduction to the Axiomatic Theory of Convexity, Kishinev, Ŝtiinca, 1984.

  31. Tarski, A.,What is elementary geometry?, in: L. Henkin (ed.),The Axiomatic Method, with Special Reference to Geometry and Physics, North Holland, Amsterdam, 1959, pp. 16–29.

    Google Scholar 

  32. Van De Vel, M.,Binary convexities and distributive lattices, Proc. London Math. Soc.48 (1984), 1–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libkin, L. n-distributivity, dimension and Carathéodory's theorem. Algebra Universalis 34, 72–95 (1995). https://doi.org/10.1007/BF01200491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200491

Keywords

Navigation