Skip to main content
Log in

The fundamental theorem of finite semidistributive lattices

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a Fundamental Theorem of Finite Semidistributive Lattices (FTFSDL), modelled on Birkhoff’s Fundamental Theorem of Finite Distributive Lattices. Our FTFSDL is of the form “A poset L is a finite semidistributive lattice if and only if there exists a set with some additional structure, such that L is isomorphic to the admissible subsets of ordered by inclusion; in this case, and its additional structure are uniquely determined by L.” The additional structure on is a combinatorial abstraction of the notion of torsion pairs from representation theory and has geometric meaning in the case of posets of regions of hyperplane arrangements. We show how the FTFSDL clarifies many constructions in lattice theory, such as canonical join representations and passing to quotients, and how the semidistributive property interacts with other major classes of lattices. Many of our results also apply to infinite lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adaricheva, K.V., Nation, J.B.: Classes of semidistributive lattices. In: Grätzer, G.A., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, vol. 2, pp. 59–101. Birkhäuser, Cham (2016)

    Chapter  Google Scholar 

  2. Adaricheva, K.V., Nation, J.B.: Lattices of algebraic subsets and implicational classes. In: Grätzer, G.A., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, vol. 2, pp. 102–151. Birkhäuser, Cham (2016)

    Google Scholar 

  3. Asai, S.: Semibricks. Int. Math. Res. Not. 2020(16), 4993–5054 (2020)

  4. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. Cambridge University Press, Cambridge (2006)

  5. Barbut, M.: Note sur l’algèbre des techniques d’analyse hiérarchique appendix to L’analyse hiérarchique by Benjamin Matalon, pp. 125–146. Gauthier–Villars, Paris (1965)

    Google Scholar 

  6. Barnard, E.: The canonical join complex. Electron. J. Combin. 26(1), 25 (2019). Paper 1.24

    Article  MathSciNet  Google Scholar 

  7. Barnard, E., Carroll, A.T., Zhu, S.: Minimal inclusions of torsion classes. Algebr. Comb. 2(5), 879–901 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)

    Article  MathSciNet  Google Scholar 

  9. Birkhoff, G.: Lattice theory. Corrected reprint of the 1967 third edition. American Mathematical Society Colloquium Publications 25. American Mathematical Society, Providence (1979)

  10. Caspard, N., Santocanale, L., Wehrung, F.: Permutahedra and associahedra. In: Grätzer, G.A., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, vol. 2, pp. 215–286. Birkhäuser, Cham (2016)

  11. Day, A.: Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices. Canad. J. Math. 31(1), 69–78 (1979)

    Article  MathSciNet  Google Scholar 

  12. Day, A., Nation, J.B., Tschantz, S.: Doubling convex sets in lattices and a generalized semidistributivity condition. Order 6(2), 175–180 (1989)

    Article  MathSciNet  Google Scholar 

  13. Demonet, L., Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice theory of torsion classes: Beyond tau-tilting theory (2018). arXiv:1711.01785v2

  14. Freese, R., Ježek, J., Nation, J.B.: Free Lattices. Mathematical Surveys and Monographs, vol. 42. American Mathematical Society, Providence (1995)

    Book  Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  Google Scholar 

  16. Garver, A., McConville, T.: Lattice properties of oriented exchange graphs and torsion classes. Algebr. Represent. Theory 22, 43–78 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  18. Grätzer, G.A.: Lattice Theory: Foundation. Springer, Basel (2011)

    Book  Google Scholar 

  19. Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice structure of Weyl groups via representation theory of preprojective algebras. Compos. Math. 154(6), 1269–1305 (2018)

    Article  MathSciNet  Google Scholar 

  20. Jónsson, B.: Sublattices of a free lattice. Can. J. Math. 13, 256–264 (1961)

    Article  MathSciNet  Google Scholar 

  21. Markowsky, G.: The factorization and representation of lattices. Trans. Am. Math. Soc. 203, 185–200 (1975)

    Article  MathSciNet  Google Scholar 

  22. Markowsky, G.: Primes, irreducibles and extremal lattices. Order 9(3), 265–290 (1992)

    Article  MathSciNet  Google Scholar 

  23. Mizuno, Y.: Classifying \(\tau \)-tilting modules over preprojective algebras of Dynkin type. Math. Z. 277(3–4), 665–690 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)

    Article  MathSciNet  Google Scholar 

  25. Reading, N.: Lattice and order properties of the poset of regions in a hyperplane arrangement. Algebra Universalis 50, 179–205 (2003)

    Article  MathSciNet  Google Scholar 

  26. Reading, N.: Lattice congruences of the weak order. Order 21(4), 315–344 (2004)

    Article  MathSciNet  Google Scholar 

  27. Reading, N.: Noncrossing partitions and the shard intersection order. J. Algebraic Combin. 33(4), 483–530 (2011)

    Article  MathSciNet  Google Scholar 

  28. Reading, N.: Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math. 29(2), 736–750 (2015)

    Article  MathSciNet  Google Scholar 

  29. Reading, N.: Lattice theory of the poset of regions. In: Grätzer, G.A., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, vol. 2, pp. 399–487. Birkhäuser, Cham (2016)

    Chapter  Google Scholar 

  30. Stanley, R.P.: Enumerative Combinatorics. Cambridge Studies in Advanced, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  31. Thomas, H., Williams, N.: Rowmotion in slow motion. Proc. Lond. Math. Soc. (3) 119(5), 1149–1178 (2019)

    Article  MathSciNet  Google Scholar 

  32. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts, in Ordered sets (Banff, Alta., 1981), pp. 445–470, Reidel, Boston (1982)

Download references

Acknowledgements

H.T. would like to thank Laurent Demonet and Osamu Iyama for their hospitality at Nagoya University and helpful conversations. D.E.S. would like to thank the attendees of the Maurice Auslander Distinguished Lectures in 2019 for their helpful remarks. All the authors would like to thank the anonymous referees for their careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Reading.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nathan Reading was partially supported by the National Science Foundation under Grant Number DMS-1500949 and by the Simons Foundation under Award Number 581608. David Speyer was partially supported by the National Science Foundation under Grant Number DMS-1600223. Hugh Thomas was partially supported by an NSERC Discovery Grant and the Canada Research Chairs program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reading, N., Speyer, D.E. & Thomas, H. The fundamental theorem of finite semidistributive lattices. Sel. Math. New Ser. 27, 59 (2021). https://doi.org/10.1007/s00029-021-00656-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00656-z

Mathematics Subject Classification

Navigation