Skip to main content
Log in

Precision of dipole localization in a spherical volume conductor: A comparison of referential EEG, magnetoencephalography and scalp current density methods

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

In this study, we determined the influence of dipole orientation, dipole location, and number of recording sites on the precision of dipole localization in a spherical volume conductor. We compared localization from referential EEG (R-EEG), scalp current density EEG (SCD-EEG) and magnetoencephalography (MEG). Dipole orientation had a small influence on the precision of dipole localization for R-EEG and SCD-EEG. Dipole location relative to the recording sites, dipole depth, and number of recording channels strongly influenced the precision of dipole localization. Assuming equal signal to noise conditions for each recording method, MEG and SCD-EEG had a similar precision for dipole localization of a single tangential dipole source and both methods were more precise than R-EEG. However, SCD-EEG was inferior to MEG for distinguishing a single tangential current source from a pair of deeper radial current sources. In summary, these results suggest that the MEG will be most useful for localization of multiple simultaneous dipole sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi, A.A. and Azen, S.P. Statistical Analysis A Computer Oriented Approach. Academic Press, New York, 1979: 288–301.

    Google Scholar 

  • Balish, M., Sato, S., Connaughton, P., and Kufta, C. Localization of implanted dipoles by magnetoencephalography. Neurology, 1991, 41: 1072–1076.

    Google Scholar 

  • Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, R., Ives, J., Kennedy, J.G., and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol. 1990, 28: 811–817.

    Google Scholar 

  • Cuffin, B.N. and Cohen, D. Comparison of the magnetoencephalogram and electroencephalogram. Electroenceph. Clin. Neurophysiol., 1979, 47: 132–146.

    Google Scholar 

  • Hari, R., Hamalainen, M., Ilomoniemi, R. and Lounasmaa, O.V. MEG versus EEG localization test. Ann. Neurol., 1991, 30: 222–3.

    Google Scholar 

  • Hochstadt, H. Special functions of mathematical physics, Holt Rhinehart and Winston, New York, 1966: 29–36.

    Google Scholar 

  • Hosek, R.S., Sances, A., Jodat, R.W., and Larson, S.J. Contributions of intracerebral currents to EEG. IEEE Trans. Biomed. Eng., 1978, 25: 405–413.

    Google Scholar 

  • Menninghaus, E., Lutkenhoner, B., and Gonzalez, S.L. Localization of a dipolar source in a skull phantom: Realistic versus spherical model. IEEE Trans. Biomed. Eng., 1994, 41: 986–989.

    Google Scholar 

  • Mosher, J.C., Spencer, M.E., Leahy, R.M., and Lewis, P.S. Error bounds for EEG and MEG dipole source localization. Electroenceph. Clin. Neurophysiol., 1993, 86: 303–321.

    Google Scholar 

  • Nunez, P.L. Electric Fields of the Brain. Oxford University Press, New York, 1981: 82–83.

    Google Scholar 

  • Nunez, P.L. Localization of Brain Activity with Electroencephalography. In: Sato, S. (Ed.), Advances in Neurology Volume 54 Magnetoencephalography. Raven Press, New York, 1990: 39–66.

    Google Scholar 

  • Perrin, F., Bertrand, O., and Pernier, J. Scalp current density mapping: Value and estimation from potential data. IEEE Trans. Biomed. Eng., 1987, 34: 283–288.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. Numerical recipes. The art of scientific computing, Cambridge University Press, New York, 1987: 125 & 180–183.

    Google Scholar 

  • Romani, G.L. and Pizzella, V. Localization of Brain Activity with Magnetoencephalography. In: Sato, S. (Ed.), Advances in Neurology Volume 54 Magnetoencephalography. Raven Press, New York, 1990: 39–66.

    Google Scholar 

  • Roth, B.J., Balish, M., Gorbach, A., and Sato, S. How well does a three-sphere model predict positions of dipoles in a realistically shaped head?, EEG Clin. Neurophysiol., 1993, 87: 175–184.

    Google Scholar 

  • Sharbrough, F., Chantrian, G., Lesser, R.P., Luders, H., Nuwer, M., and Picton, T.W. Guideline Thirteen: Guidelines for standard electrode position nomenclature, J. Clin. Neurophysiol., 1994, 11: 111–113.

    Google Scholar 

  • Smith, D.B., Sidman, R.D., Flanigin, H.F., Henke, J., and Labiner, D. A reliable method for localizing deep intracranial sources of the EEG. Neurology, 1985, 35: 1702–1707.

    Google Scholar 

  • Sutherling, W.W., Levesque, M.F., Crandal, P.H., and Barth, D.S. Localization of partial epilepsy using magnetic and electric measurements. Epilepsia, 1991, 32: S29-S40.

    Google Scholar 

  • Williamson, S.J. MEG versus EEG localization test, Ann. Neurol., 1991, 30: 222.

    Google Scholar 

  • Wood, C.C., Cohen, D., Cufftn, N.B., Yarita, M., and Truett, A. Electrical sources in human somatosensory cortex: Identification by combined magnetic and potential recordings, Science, 1985, 227: 1051–1053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murro, A.M., Smith, J.R., King, D.W. et al. Precision of dipole localization in a spherical volume conductor: A comparison of referential EEG, magnetoencephalography and scalp current density methods. Brain Topogr 8, 119–125 (1995). https://doi.org/10.1007/BF01199775

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199775

Key words

Navigation