Skip to main content
Log in

Evaluating Methods for Constructing Average High-Density Electrode Positions

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Accurate analysis of scalp-recorded electrical activity requires the identification of electrode locations in 3D space. For example, source analysis of EEG/ERP (electroencephalogram, EEG; event-related-potentials, ERP) with realistic head models requires the identification of electrode locations on the head model derived from structural MRI recordings. Electrode systems must cover the entire scalp in sufficient density to discriminate EEG activity on the scalp and to complete accurate source analysis. The current study compares techniques for averaging electrode locations from 86 participants with the 128 channel “Geodesic Sensor Net” (GSN; EGI, Inc.), 38 participants with the 128 channel “Hydrocel Geodesic Sensor Net” (HGSN; EGI, Inc.), and 174 participants with the 81 channels in the 10–10 configurations. A point-set registration between the participants and an average MRI template resulted in an average configuration showing small standard errors, which could be transformed back accurately into the participants’ original electrode space. Average electrode locations are available for the GSN (86 participants), Hydrocel-GSN (38 participants), and 10–10 and 10–5 systems (174 participants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The ANOVAs were done with the SAS GLM analysis program. The averaging type for this analysis was nested in the participants, and the appropriate error term was estimated with explicit testing routines. For the post hoc comparisons, the Tukey LSD method was used, with the error term for the analysis coming from the MS error term for the omnibus averaging type test.

  2. We have developed measurement and calculation procedures for determining in subject space the locations of Nz, Iz, Vz, LPA, RPA, LMA, and RMA based on external head measurements. A circumference of the head is measured on the Nz–Iz horizontal plane, the vertical planes are defined as being perpendicular to the Nz-Iz horizontal plane, with the left–right plane’s circumference measured from the LPA to the RPA with the vertex point as laying at 50 % of this circumference and the anterior-posterior circumference measured as the circumference from the Nz to the Iz through the Vz. The Cz is defined as 50 % of the circumference on the anterior-posterior plane. In addition to the circumferences, we measure the diameter from the Nz to the Iz, and the LPA and the RPA. The origin is defined as a point at the intersection of the three planes, and all fiducials can be defined in relation to these points.

References

  • Avants B, Duda J, Kim J, Zhang H, Pluta J, Gee J, Whyte J (2008) Multivariate analysis of structural and diffusion imaging in traumatic brain injury. Acad Radiol 15:1360–1375

    Article  PubMed  Google Scholar 

  • Chatrian G, Lettich E, Nelson P (1985) Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am J Electroneurodiagnostic Technol 25:83–92

    Google Scholar 

  • Chatrian GE, Lettich E, Nelson PL (1988) Modified nomenclature for the “10 %” electrode system. J Clin Neurophysiol 5:183–186

    Article  CAS  PubMed  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  PubMed  Google Scholar 

  • Darvas R, Ermer J, Mosher J, Leahy R (2006) Generic head models for atlas-based EEG source analysis. Hum Brain Mapp 27:129–143

    Article  PubMed  Google Scholar 

  • Evans AC, Brown E, Kelly RL, Peters TM (1994) 3D statistical neuroanatomical models from 305 MRI volumes. IEEE, Piscataway

    Google Scholar 

  • Fonov V, Evans A, Botteron KA, McKinstry R, Collins D (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole J (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 45:980–997

    Google Scholar 

  • Grabner G, Janke A, Budge M, Smith D, Pruessner J, Collins D (2006) Symmetric atlasing and model based segmentation: An application to the hippocampus in older adults. In: Larsen R, Niesen M, Sporring J (eds) MICCAI. Springer-Verlag, Berlin, pp 58–66

    Google Scholar 

  • Grieve P, Emerson R, Isler J, Stark R (2004) Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram. Neuroimage 21:1260–1275

    Article  PubMed  Google Scholar 

  • Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabilitation 4:46–78

    Article  Google Scholar 

  • Jasper H (1958) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, de Haan M, Oliver A, Smith W, Hatzakis H, Tucker L, Csibra G (2001) Recording and analyzing high-density event-related potentials with infants using the Geodesic Sensor Net. Dev Neuropsychol 19:295–323

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased diffeomorphic construction for computational anatomy. NeuroImage 23:s151–s160

    Article  PubMed  Google Scholar 

  • Jurcak V, Okamoto M, Singh A, Dan I (2005) Virtual 10-20 measurement of MRI images for inter-model linking of transcranial and tomographic neuroimaging methods. NeuroImage 26:1184–1192

    Article  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisted: Their validity as relative head surface based positioning systems. NeuroImage 34:1600–1611

    Article  PubMed  Google Scholar 

  • Luu P, Ferree T (2000) Determination of the Geodesic Sensor Nets’ electrode positions and their 10–10 international equivalents. Technical Note: Electrical Geodesics, Inc, Eugene, OR.

  • Luu P, Ferree T (2005) Determination of the Hydrocel Geodesic Sensor Nets’ average electrode positions and their 10–10 international equivalents. Technical Note: Electrical Geodesics, Inc, Eugene, OR

  • Mazziotta J, Toga A, Evans A, Fox PL, Zilles K, Simpson G, Kabani N (2001) A probabilistic atlas and reference system for the human brain. Philosophical Trans R Soc Lond B 356:1293–1322

    Article  CAS  Google Scholar 

  • Michel C, Murray M, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Myronenko A, Song X (2010) Point Set Registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32:2262–2275

    Article  PubMed  Google Scholar 

  • Myronenko A., Song X, Carreira-Perpinan M (2007) Non-rigid point set registration: Coherent point drift. Advances in Neural Information Processing Systems–Proceedings of the 2006 Conference. Vol 19, MIT Press, Vancouver, pp 1009–1016

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719

    Article  CAS  PubMed  Google Scholar 

  • Penny W, Friston K, Ashburner J, Keibel S, Nichols J (2007) Statistical parametric mapping: the analysis of functional brain images. Academic Press, New York

    Google Scholar 

  • Plummer C (2011) EEG source analysis—time for a common language. J Clin Neurophysiol 28:76

    Article  PubMed  Google Scholar 

  • Reynolds G, Richards J (2009) Cortical source localization of infant cognition. Dev Neuropsychol 3:312–329

    Article  Google Scholar 

  • Richards J (2010) Attention in the brain in early infancy. In: Johnson S (ed) Neoconstructivism: The New Science of Cognitive Development. Oxford University Press, New York, pp 3–31

    Google Scholar 

  • Rorden C. (2012a, February). MRIcroGL. Retrieved from McCausland Center: http://www.mccauslandcenter.sc.edu/mricrogl/

  • Rorden C. (2012b). MRICron. Retrieved from McCausland Center: http://www.mccauslandcenter.sc.edu/mricro/mricron/

  • Russell G, Eriksen K, Poolman PL, Tucker D (2005) Geodesic photogrammetry for localizing sensor positions in dense arrays. Clin Neurophysiol 116:1130–1140

    Article  PubMed  Google Scholar 

  • Sanchez C, Richards J, & Almli C (2011). Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev Psychobiol 57:1–15.

  • Sanchez C, Richards J, Almli C (2012) Age-specific MRI templates for pediatric neuroimaging. Dev Neuropsychol 37(5):379–399

    Article  PubMed Central  PubMed  Google Scholar 

  • Scherg M (1990) Fundamentals of dipoles source potential. In: Grandon F, Hoke M, Romani G (eds) Auditory evoked magnetic fields and potentials, vol 6. Karger, Basel, pp 40–69

    Google Scholar 

  • Smith S, Jenkinson M, Woolrich MW, Beckmann C, Behrens T, Johansen-Berg H, Matthews P (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:208–219

    Article  Google Scholar 

  • Srinivasan R, Tucker D, Murias M (1998) Estimating the spatial nyquist of the Nyquist of the human EEG. Behav Res Methods Instrum Comput 30:8–19

    Article  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York

    Google Scholar 

  • Tamraz J, Comair Y (2006) Atlas of regional anatomy of the brain using MRI with functional correlations. Springer-Verlag, Berlin

    Google Scholar 

  • Tucker D (1993) Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalogr Clin Neurophysiol 87:154–163

    Article  CAS  PubMed  Google Scholar 

  • Tucker D, Liotti M, Russell G, Posner M (1994) Spatiotemporal analysis of brain electrical fields. Hum Brain Mapp 1:134–152

    Article  Google Scholar 

  • Vatta F, Meneghini F, Esposito F, Mininel S, Di Saller F (2010) Realistic and spherical head modeling for EEG forward problem solution: A comparative. Comput Intell Neurosci

  • Wang Y, Gotman J (2001) The influence of electrode location errors on EEG dipole source localization with a realistic head model. Clin Neurophysiol 112:1777–1780

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH Grant to JER, R37 HD18942, and by the USAMERA Grant to JMCV, W81XWH-06-1-0272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Richards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, J.E., Boswell, C., Stevens, M. et al. Evaluating Methods for Constructing Average High-Density Electrode Positions. Brain Topogr 28, 70–86 (2015). https://doi.org/10.1007/s10548-014-0400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0400-8

Keywords

Navigation