Skip to main content
Log in

Fracture resistance of a glass-fibre reinforced rubber-modified thermoplastic hybrid composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Toughening mechanisms in a hybrid amorphous thermoplastic composite containing both distributed rubber particles and rigid glass fibres have been investigated. Tensile properties were measured for a range of materials with varying rubber particle and glass-fibre contents, and different rubber particle sizes. Fracture toughness was characterized by separating the overall fracture into its initiation and propagation components. Deformation and fracture modes at crack tips were optically characterizedin situ during loading. The results indicate that both initiation and propagation toughness are enhanced by rubber particle additions to the glass-fibre reinforced composite. Synergistic effects between glass fibres and rubber particles are identified: for example, glass fibres inhibit crazing at rubber particles, and rubber particles tend to promote crazing at fibre/matrix interfaces and also void initiation at fibre ends. Toughening mechanisms are discussed in the light of available models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Folkes, “Short Fiber Reinforced Thermoplastic Composites” (Research Studies Press, Chichester, 1982) p. 27.

    Google Scholar 

  2. D. Short andJ. Summerscales,Composites 10 (1979) 215.

    Article  Google Scholar 

  3. Idem, ibid. 11 (1980) 33.

    Article  CAS  Google Scholar 

  4. J. Liau, B. Jang, L. Hwang andR. Wilcox, in Proceedings of “ANTEC '88” (Society of Plastic Engineers, 1988) p. 1649.

  5. R. S. Bailey andM. G. Bader, in Proceedings of the 5th International Conference on Composite Materials, San Diego, 1985 (Metallurgical Society, 1985) p. 947.

  6. B. L. Peterson, R. N. Pangborn andC. G. Pantano, submitted to “ISTFA'89 Advanced Materials Symposium”, International Symposium for Testing and Failure Analysis, Los Angeles, Nov. 1989.

  7. J. M. Scott andD. C. Phillips,J. Mater. Sci. 10 (1975) 551.

    Article  CAS  Google Scholar 

  8. K. Friedrich, in Proceedings of the 5th International Conference on Deformation, Yield and Fracture of Polymers, Cambridge, March 1982 (Plastic and Rubber Institute, London, 1982) p. 26.1.

  9. W. V. Titow andB. J. Lanhan, “Reinforced Thermoplastics” (Applied Science, London, 1975) p. 374.

    Google Scholar 

  10. A. J. Kinloch, D. L. Maxwell andR. J. Young,J. Mater. Sci. 20 (1985) 4169.

    Article  CAS  Google Scholar 

  11. H. Richter,Kunststoffe 67 (1977) 739 (in German).

    CAS  Google Scholar 

  12. C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977) p. 1.

    Google Scholar 

  13. R. P. KAMBOUR,Macromol. Rev. 7 (1973) 1.

    Article  Google Scholar 

  14. J. N. Sultan andF. J. McGarry,Polym. Engng Sci. 13 (1973) 29.

    Article  CAS  Google Scholar 

  15. A. M. Donald andE. J. Kramer,J. Mater. Sci. 17 (1982) 1765.

    Article  CAS  Google Scholar 

  16. A. S. Argon andR. E. Cohen, in “Crazing in Polymers”, Vol. 11, Advances in Polymer Science Series, Vol. 91/92, edited by H. H. Kauch (Springer-Verlag, Berlin, 1990) p. 301.

    Google Scholar 

  17. A. M. Donald andE. J. Kramer,J. Mater Sci. 17 (1982) 1871.

    Article  CAS  Google Scholar 

  18. F. Haaf, H. Breuer andJ. Stabenow,J. Macromol. Sci. Phys. B14 (1977) 387.

    Google Scholar 

  19. K. T. Faber andA. G. Evans,Acta. Metall. 31 (1983) 565.

    Article  Google Scholar 

  20. P. W. R. Beaumont,Mater. Forum 11 (1988) 332.

    CAS  Google Scholar 

  21. N. Sato, T. Kurauchi, S. Sato andO. Kamigaito,J. Comp. Mater. 22 (1988) 850.

    Article  CAS  Google Scholar 

  22. R. A. Mendelson,J. Polym. Sci. Polym. Phys. Edn 23 (1985) 1975.

    Article  CAS  Google Scholar 

  23. P. W. Early andS. J. Burns,Int. J. Fract. 16 (1980) 397.

    Article  Google Scholar 

  24. P. Chang andJ. A. Donovan,J. Mater. Sci. 24 (1989) 816.

    Article  CAS  Google Scholar 

  25. D. Beahan, A. Thomas andM. Bevis,ibid. 11 (1976) 1207.

    Article  Google Scholar 

  26. C. B. Bucknall, F. F. P. Cote andI. K. Partridge,ibid. 22 (1987) 1341.

    Article  CAS  Google Scholar 

  27. C. C. Chad andJ. C. M. Li ibid. 16 (1981) 1858.

    Article  Google Scholar 

  28. N. Walker, R. N. Haward andJ. N. Hay,ibid. 14 (1979) 1085.

    Article  CAS  Google Scholar 

  29. A. J. Kinloch andR. J. Young, “Fracture Behaviors of Polymers” (Applied Science, London, 1983) p. 174.

    Google Scholar 

  30. D. Broek, “Elementary Engineering Fracture Mechanics” (Martinus Nijhoff, Boston, 1986) p. 232

    Google Scholar 

  31. A. G. Evans, Z. B. Ahmad, D. G. Gilbert andP. W. R. Beaumont,Acta Metall. 34 (1986) 79.

    Article  CAS  Google Scholar 

  32. S. Kunz-Douglass, P. W. R. Beaumont andM. F. Ashby,J. Mater. Sci. 15 (1980) 1109.

    Article  CAS  Google Scholar 

  33. S. V. Nair andM. L. Shiao, “Crack Wake Dilatational Toughening in Rubber Toughened Polymers”, to be published.

  34. A. H. Cottrell,Proc. R. Soc., Lond. A282 (1964) 2.

    Google Scholar 

  35. G. A. Cooper andA. Kelly,ASTM STP 452 (1969) 90.

    Google Scholar 

  36. C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977) p. 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, S.V., Shiao, M.L. & Garrett, P.D. Fracture resistance of a glass-fibre reinforced rubber-modified thermoplastic hybrid composite. J Mater Sci 27, 1085–1100 (1992). https://doi.org/10.1007/BF01197664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197664

Keywords

Navigation