Skip to main content
Log in

Mechanism of carburization of high-temperature alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation of the mechanism of gaseous carburization in a reducing environment was conducted for selected Fe- and Ni-base alloys. Carburization kinetics were measured as functions of temperature in the range 870–980 °C. Scanning electron microscopy, analytical electron microscopy and X-ray diffractometry were employed for microstructural characterization and microchemical analysis. Changes in mechanical strength produced by carburization were determined from microhardness and tensile property measurements. Kinetic studies indicated that the carburization reaction followed a parabolic rate law. Depending upon the nature of surface scale formed in the presence of a carburizing environment, the rate-determining step of the reaction varied from C diffusion into the alloy in the presence of a carbide scale to that in the presence of an oxide scale. Under reducing carburizing conditions, alloys inherently protected by Cr2O3-base scale were found to develop a surface carbide scale which allowed C to penetrate into the alloy with relative ease and, thus, the carburization kinetics was accelerated. In contrast, an alloy capable of forming Al2O3 developed and maintained a protective surface oxide scale which acted as an effective barrier to C diffusion into the alloy. Degradation of mechanical strength due to precipitation of carbides in the alloy was correlated with the rate of attack and consequently the nature of the surface scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Norton (coordinator), “Carburization in High Temperature Process Plant Materials”, Colloquium Proceedings (Commission of the European Communities, BP 1003, Luxembourg, 1981).

    Google Scholar 

  2. J. Blackburn,Mater. Perform. 16 (12) (1977) 24.

    CAS  Google Scholar 

  3. G. Y. Lai, M. F. Rothman andD. E. Fluck,Industr. Heating (August 1985).

  4. G. Y. Lai, in “High Temperature Corrosion in Energy Systems”, edited by M. F. Rothman (TMS-AIME, Warrendale, Pennsylvania, 1985) p. 564.

    Google Scholar 

  5. G. Y. Lai andM. F. Rothman, in “Corrosion 84” (National Association of Corrosion Engineers, New Orleans, Houston, Texas, 1984) Paper No. 11.

    Google Scholar 

  6. G. M. Smith, D. J. Young andD. L. Trimm,Oxid. Met. 18 (5/6) (1982) 229.

    Article  CAS  Google Scholar 

  7. J. M. Harrison, J. F. Norton, R. T. Derricott andJ. B. Marriott,Werkst. Korros. 30 (1979) 785.

    Article  CAS  Google Scholar 

  8. J. F. Norton, L. Blidegen, S. Canetoli andP. D. Frampton,ibid. 32 (1981) 467.

    Article  CAS  Google Scholar 

  9. A. Schnaas andH. J. Grabke,Oxid. Met. 12 (5) (1978) 387.

    Article  CAS  Google Scholar 

  10. I. M. Harrison andJ. F. Norton, in “Behavior of High Temperature Alloys in Aggressive Environments”, edited by I. Kirman, J. B. Marriott, M. Merz, R. R. Sahm and D. P. Whittle (Metals Society, London, 1980) p. 661.

    Google Scholar 

  11. E. Bullock, P. D. Frampton andJ. F. Norton, in “Microstructural Science”, Vol. 9, edited by Gunter Petzow, R. Paris, E. D. Albrecht and J. A. McCall (Elsevier NorthHolland, New York, -1981) p. 261.

    Google Scholar 

  12. G. H. Meier, W. C. Coons andR. A. Perkins,Oxid. Met. 18 (3/4) (1982) 235.

    Article  Google Scholar 

  13. R. A. Perkins, in “Behavior of High Temperature Alloys in Aggressive Environments”, edited by I. Kirman, J. B. Marriott, M. Merz, R. R. Sahm and D. P. Whittle (Metals Society, London, 1980) p. 617.

    Google Scholar 

  14. O. Van der Biest, J. M. Harrison andJ. F. Norton,ibid.in “ p. 681.

    Google Scholar 

  15. G. Y. Lai andR. A. Johnson, “Carburization ofAustenitic Alloys by Gaseous Impurities in Helium”, DOE Report GA-A 15790 (General Atomic Company, San Diego, CA, 1980).

    Book  Google Scholar 

  16. R. B. Herchenroeder, G. Y. Lai andK. V. Rao,J. Metals 35 (11) (1983) 16.

    CAS  Google Scholar 

  17. H. J. Grabke andA. Schnass, in “Alloy 800”, edited by W. Betteridgeet al. (North-Holland, Amsterdam, 1978) p. 195.

    Google Scholar 

  18. J. K. Stanley,J. Mater. 5 (1970) 957.

    CAS  Google Scholar 

  19. K. Natesan andT. F. Kassner,Met. Trans. 4 (1973) 2557.

    Article  CAS  Google Scholar 

  20. J. C. Greenbank,J. Iron Steel Inst. 210 (1972) 111.

    CAS  Google Scholar 

  21. L. L. Shreir, “Corrosion”, (Metal Society London, 1976) p. 798.

    Google Scholar 

  22. J. W. Edington, “Practical Electron Microscopy in Materials Science”, Vol. 4 (Philips, Eindhoven, 1976) p. 33.

    Google Scholar 

  23. R. F. Decker andC. T. Sims, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 52.

    Google Scholar 

  24. A. W. Searcy, in “Chemical and Mechanical Behavior of Inorganic Materials”, edited by A. W. Searcy, D. V. Ragone and U. Columbo (Wiley-Interscience, New York, 1970) p. 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M., Abbas, N.M. Mechanism of carburization of high-temperature alloys. J Mater Sci 27, 1061–1069 (1992). https://doi.org/10.1007/BF01197661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197661

Keywords

Navigation