Skip to main content
Log in

Utilization of electron acceptors by lactobacilli isolated from sourdough

II. Lactobacillus pontis, L. reuteri, L. amylovorus, andL. fermentum

  • Original Paper
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Abstract

The metabolism of maltose and the use of electron acceptors has been investigated in strains of lactobacilli which are known to be stable elements in sourdoughs, which, traditionally, have been used for a long time. The metabolic features ofLactobacillus sanfrancisco have been described by us in a previous communication. Similar principles have been detected for the competitiveness ofL. pontis, L. reuteri, L. fermentum andL. amylovorus, as well as species-specific characteristics. Based on these findings the metabolic key reactions have been identified and the use of electron acceptors present in sourdough are presented in a schematic overview. In contrast toL. sanfrancisco, these species can not use oxygen as an electron acceptor, and the length of their lag phase was not affected by agitation. Malate and fumarate were reduced to succinate, and fructose was used, depending on the species, as an electron acceptor, carbon source or both. All heterofermentative sourdough lactobacilli efficiently split maltose using maltose phosphorylase. Glucose was excreted, which induced glucose repression in competing indigenous micro-organisms, without affecting the maltose metabolism of sourdough lactobacilli. Lactobacilli generate additional adenosine 5′-triphosphate (ATP) from acetyl phosphate in the presence of electron acceptors. These special features are suggested to represent a general principle which accounts for the prevalence of specific heterofermentative lactobacilli which are propagated over long periods present in sourdough fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spicher G, Schroder R (1978) Z Lebensm Unters Forsch 167: 342–354

    PubMed  Google Scholar 

  2. Kline L, Sugihara TF (1971) Appl Microbiol 21: 459–465

    PubMed  Google Scholar 

  3. Nout MJR, Creemers-Molenar T (1987) Chem Mikrobiol Technol Lebensm 10: 162–167

    Google Scholar 

  4. Böcker G, Vogel RF, Hammes WP (1990) Getreide Mehl Brot 44: 269–274

    Google Scholar 

  5. Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH, Hammes WP (1994) Int J Syst Bacteriol 44: 223–229

    PubMed  Google Scholar 

  6. Hamad S, Böcker G, Vogel RF, Hammes WP (1992) Appl Microbiol Biotechnol 37: 728–731

    Google Scholar 

  7. Spicher G, Stephan H (1966) Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt II 120: 699–701

    Google Scholar 

  8. Lönner C, Welander T, Molin N, Dostalek M, Blickstad E (1986) Food Microbiol 3: 3–12

    Google Scholar 

  9. Spicher G (1987) Z Lebensm Unters Forsch 184: 300–303

    Google Scholar 

  10. Strohmar W, Diekmann H (1992) Z Lebensm Unters Forsch 194: 536–546

    Google Scholar 

  11. Sugihara TF, Kline L, Miller MW (1971) Appl Microbiol 21: 456–458

    PubMed  Google Scholar 

  12. Medcalf DG, Cheung PW (1971) Cereal Chem 48: 1–8

    Google Scholar 

  13. Saunders RM, Ng H, Kline L (1972) Cereal Chem 49: 86–91

    Google Scholar 

  14. Spicher G, Schröder R, Schöllhammer K (1979) Z Lebensm Unters Forsch 167: 77–81

    Google Scholar 

  15. Galli A, Franzetti L, Fortina MG (1987) Microbiol Aliments Nutr 5: 3–9

    Google Scholar 

  16. Barber S, Baguena R, Benedito de Barber C, Martinez-Anaya MA (1991) Z Lebensm Unters Forsch 192: 46–52

    Google Scholar 

  17. Martinez-Anaya MA, Pitarch B, Bayarri P, Benedito de Barber C (1990) Cereal Chem 67: 85–91

    Google Scholar 

  18. Stolz P, Böcker G, Vogel RF, Hammes WP (1993) FEMS Microbiol Lett 109: 237–242

    Google Scholar 

  19. Wood BJB, Rainbow C (1961) Biochem J 78: 204

    PubMed  Google Scholar 

  20. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Z Lebensm Unters Forsch 201: 91–96

    Google Scholar 

  21. Spicher G, Rabe E (1983) Z Lebensm Unters Forsch 176: 190–195

    Google Scholar 

  22. Röcken W, Rick M, Reinkemeier M (1992) Z Lebensm Unters Forsch 195: 259–263

    Google Scholar 

  23. Martinez-Anaya M, Llijn ML, Macias MP, Collar C (1994) Z Lebensm Unters Forsch 199: 186–190

    PubMed  Google Scholar 

  24. Condon S (1983) Ir J Food Sci Technol 7: 15–29

    Google Scholar 

  25. Klempp J, Regula E, Wassermann L (1982) Z Lebensm Unters Forsch 175: 403–405

    Google Scholar 

  26. Kandler O (1983) J Antonie van Leeuwenhoek 49: 209–224

    Google Scholar 

  27. Condon S (1987) FEMS Microbiol Rev 46: 269–280

    Google Scholar 

  28. Starrier JR, Stoyla BO (1967) Appl Microbiol 15: 1025–1030

    Google Scholar 

  29. Peinado JM, Barbero A, van Uden N (1987) Appl Microbiol Biotechnol 26: 154–157

    Google Scholar 

  30. Mohammed SI, Steenson LR, Kirleis AW (1991) Appl Environ Microbiol 57: 2529–2533

    Google Scholar 

  31. Spicher G, Schröder R, Stephan H (1980) Z Lebensm Unters Forsch 171: 119–124

    Google Scholar 

  32. Veiga-Da-Cunha M, Firme P, San Romáo MV, Santos H (1992) Appl Environ Microbiol 58: 2271–2279

    Google Scholar 

  33. Neubauer H, Glaasker E, Hammes WP, Poolman B, Konings WN (1994) Bacteriol 176: 3007–3012

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolz, P., Vogel, R.F. & Hammes, W.P. Utilization of electron acceptors by lactobacilli isolated from sourdough. Z Lebensm Unters Forch 201, 402–410 (1995). https://doi.org/10.1007/BF01192742

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192742

Keywords

Navigation