Skip to main content
Log in

Ultrastructural organization of the interstitial subnucleus of the nucleus of the tractus solitarius in the cat: Identification of vagal afferents

  • Published:
Journal of Neurocytology

Summary

This electron microscopic study, based on serial section analysis, describes the synaptic organization of the interstitial subnucleus of the nucleus of the solitary tract and identifies the terminals of the vagal primary afferents utilizing degeneration and HRP transport. The interstitial subnucleus contains sparsely scattered cell bodies, numerous dendrites and axon terminals, and bundles of unmyelinated and myelinated axons. The cell bodies which are small in diameter have an organelle poor cytoplasm and a large invaginated nucleus.

Axon terminals can be classified into two main types according to their vesicular shape. The first type contains clear, round vesicles and can be further subdivided into two subgroups on the basis of their morphology and the size of their vesicles. In the first subgroup the terminals are small, contain a few mitochondria and their vesicles are densely packed with an homogeneous size. In the second subgroup the terminals which vary from small to large, contain many mitochondria and contain round vesicles which are heterogeneous in size. The second main terminal type consists of axon terminals containing pleomorphic vesicles which are associated with asymmetrical or symmetrical synaptic contacts on dendrites. Axo-axonic contacts are present in the interstitial subnucleus. In general, the presynaptic axon terminals contain pleomorphic vesicles and the postsynaptic elements contain round vesicles of varying size. In some dendrites, identified by the presence of ribosomes, groups of round and/or pleomorphic vesicles are found associated with synaptic contacts. These dendrites are presynaptic to conventional dendrites and postsynaptic to axon terminals. After removal of the nodose ganglion, degenerative alterations are seen only at the caudal and middle levels of the interstitial subnucleus. Degeneration occurs in a few myelinated axons and in axon terminals which usually contain a mixture of small and larger round, clear vesicles. After HRP injection into the vagus nerve, the HRP reaction product is visible in axon terminals filled with clear, round vesicles which are heterogeneous in size. The labelled axon terminals establish single or multiple synaptic contacts.

This study demonstrates that terminals of vagal primary afferents consist principally of terminals of the second subgroup. The morphology of these terminals are compared to primary afferents in the brainstem and spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, S. M., Bao, X., Bieger, D., Hopkins, D. A. &Miselis, R. R. (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.Journal of Comparative Neurology 283, 248–68.

    PubMed  Google Scholar 

  • Baude, A., Lanoir, J., Vernier, P. &Puizillout, J. J. (1989) Substance P-immunoreactivity in the dorsal medial region of the medulla in the cat: effects of nodosectomy.Journal of Chemical Neuroanatomy 2, 67–81.

    PubMed  Google Scholar 

  • Beckstead, R. M. &Norgren, R. (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal and vagal nerves in the monkey.Journal of Comparative Neurology 184, 455–72.

    PubMed  Google Scholar 

  • Berger, A. J. (1977) Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation.Brain Research 135, 231–54.

    PubMed  Google Scholar 

  • Berman, A. L. (1968)The Brain Stem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: The University of Wisconsin Press.

    Google Scholar 

  • Chazal, G. &Ohara, P. T. (1986) Vesicle-containing dendrites in the nucleus raphe dorsalis of the cat. A serial section electron microscopic analysis.Journal of Neurocytology 15, 777–87.

    PubMed  Google Scholar 

  • Chazal, G. &Ralston, H. J., III (1987) Serotonin-containing structures in the nucleus raphe dorsalis of the cat: an ultrastructural analysis of dendrites, presynaptic dendrites, and axon terminals.Journal of Comparative Neurology 259, 317–29.

    PubMed  Google Scholar 

  • Chiba, T. &Doba, N. (1975) The synaptic structure of catecholaminergic axon varicosities in the dorso-medial portion of the nucleus tractus solitarius of the cat: possible roles in the regulation of cardiovascular reflexes.Brain Research 84, 31–46.

    PubMed  Google Scholar 

  • Chiba, T. &Doba, N. (1976) Catecholaminergic axo-axonic synapses in the nucleus of the tractus solitarius (pars commissuralis) of the cat: possible relation to presynaptic regulation of baroreceptor reflexes.Brain Research 102, 255–65.

    PubMed  Google Scholar 

  • Ciriello, J. (1983) Brainstem projections of aortic baroreceptor afferent fibers in the rat.Neuroscience Letters 36, 37–42.

    PubMed  Google Scholar 

  • Ciriello, J., Hrycyshyn, A. W. &Calaresu, F. R. (1981) Glossopharyngeal and vagal afferent projections to the brain stem of the cat: a horseradish peroxidase study.Journal of the Autonomic Nervous System 4, 63–79.

    PubMed  Google Scholar 

  • Contreras, R. J., Beckstead, R. M. &Norgren, R. (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat.Journal of the Autonomic Nervous System 6, 303–22.

    PubMed  Google Scholar 

  • Cottle, M. K. (1964) Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat.Journal of Comparative Neurology 132, 329–45.

    Google Scholar 

  • Ellis, L. C. &Rustioni, A. (1981) A correlative HRP, Golgi, and EM study of the intrinsic organization of the feline dorsal column nuclei.Journal of Comparative Neurology 197, 341–67.

    Google Scholar 

  • Gaudin-Chazal, G., Segu, L., Seyfritz, N. &Puizillout, J. J. (1981) Visualization of serotonin neurones in the nodose ganglia of the cat. An autoradiographic study.Neuroscience 6, 1127–37.

    Google Scholar 

  • Gaudin-Chazal, G., Seyfritz, N., Araneda, S., Vigier, D. &Puizillout, J. J. (1982) Selective retrograde transport of3H-serotonin in vagal afferents.Brain Research Bulletin 8, 503–9.

    PubMed  Google Scholar 

  • Groves, P. M. &Linder, J. C. (1983) Dendro-dendritic synapses in substantia nigra: descriptions based on analysis of serial sections.Experimental Brain Research 49, 209–17.

    Google Scholar 

  • Groves, P. M. &Wilson, C. J. (1980) Monoaminergic presynaptic axons and dendrites in rat locus coeruleus seen in reconstructions of serial sections.Journal of Comparative Neurology 193, 853–62.

    PubMed  Google Scholar 

  • Guldner, F. H. &Wolff, J. R. (1974) Dendro-dendritic synapses in the suprachiasmatic nucleus of the rat hypothalamus.Journal of Neurocytology 3, 245–50.

    PubMed  Google Scholar 

  • Gwyn, D. G., Leslie, R. A. &Hopkins, D. A. (1979) Gastric afferents to the nucleus of the solitary tract in the cat.Neuroscience Letters 14, 13–17.

    PubMed  Google Scholar 

  • Gwyn, D. G., Wilkinson, P. H. &Leslie, R. A. (1982) The ultrastructural identification of vagal terminals in the solitary nucleus of the cat after anterograde labelling with horseradish peroxidase.Neuroscience Letters 28, 139–43.

    PubMed  Google Scholar 

  • Hamilton, R. B. &Norgren, R. (1984) Central projections of gustatory nerves in the rat.Journal of Comparative Neurology 222, 560–77.

    PubMed  Google Scholar 

  • Harding, B. N. (1971) Dendro-dendritic synapses, including reciprocal synapses, in the ventrolateral nucleus of the monkey thalamus.Brain Research 34, 181–5.

    PubMed  Google Scholar 

  • Henry, M. A., Westrum, L. E. &Johnson, L. R. (1985) Enhanced ultrastructural visualization of the horseradish peroxidase-tetramethylbenzidine reaction product.Journal of Histochemistry and Cytochemistry 33, 1256–9.

    PubMed  Google Scholar 

  • Kalia, M. &Mesulam, M. -M. (1980a) Brain stem projections of sensory and motor components of the vagus nerve complex in the cat. I: the cervical vagus and nodose ganglion.Journal of Comparative Neurology 193, 435–65.

    PubMed  Google Scholar 

  • Kalia, M. &Mesulam, M. -M. (1980b) Brain stem projections of sensory and motor components of the vagus complex in the cat. II: Laryngeal, tracheobronchial, pulmonary, cardiac and gastrointestinal branches.Journal of Comparative Neurology 193, 467–508.

    PubMed  Google Scholar 

  • Kalia, M. &Richter, D. (1988) Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.Journal of Comparative Neurology 274, 574–94.

    PubMed  Google Scholar 

  • Katz, D. M. &Karten, H. J. (1979) The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius.Brain Research 171, 187–95.

    PubMed  Google Scholar 

  • Katz, D. M. &Karten, H. J. (1983) Visceral representation within the nucleus of the tractus solitarius in the pigeon,Columba livia.Journal of Comparative Neurology 218, 42–73.

    PubMed  Google Scholar 

  • Knyihar-Csillik, E., Csillik, B. &Rakic, P. (1982) Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the Rhesus Monkey.Journal of Comparative Neurology 210, 357–75.

    PubMed  Google Scholar 

  • Leslie, R. A., Gwyn, D. G. &Hopkins, D. A. (1982) The ultrastructure of the subnucleus gelatinosus of the nucleus of the tractus solitarius in the cat.Journal of Comparative Neurology 206, 109–18.

    PubMed  Google Scholar 

  • Lieberman, A. R. &Webster, K. E. (1974) Aspects of the synaptic organization of intrinsic neurons in the dorsal lateral geniculate nucleus.Journal of Neurocytology 3, 677–710.

    PubMed  Google Scholar 

  • Marfurt, C. F., Zaleski, E. M., Adams, C. E. &Welther, C. L. (1986) Sympathetic nerve fibers in rat orofacial and cerebral tissues as revealed by the HRP-WGA tracing technique: a light and electron microscopic study.Brain Research 366, 373–8.

    PubMed  Google Scholar 

  • McCrimmon, D. R., Speck, D. F. &Feldman, J. L. (1987) Role of the ventrolateral region of the nucleus of the tractus solitarius in processing respiratory afferent input from vagus and superior laryngeal nerves.Experimental Brain Research 67, 449–59.

    Google Scholar 

  • Olucha, F., Martinez-Garcia, F. &Lopez-Garcia, C. (1985) A new stabilizing agent for the tetramethylbenzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP).Journal of Neuroscience Methods 13, 131–8.

    PubMed  Google Scholar 

  • O'Neal, J. T. &Westrum, L. E. (1973) The fine structural synaptic organization of the cat lateral cuneate nucleus. A study of sequential alterations in degeneration.Brain Research 51, 97–124.

    PubMed  Google Scholar 

  • Ralston, H. J. III (1979) The fine structure of laminae I, II and III of the Macaque spinal cord.Journal of Comparative Neurology 184, 619–42.

    PubMed  Google Scholar 

  • Ralston, H. J., III &Ralston, D. D. (1979) The distribution of dorsal root axons in laminae I, II and III of the Macaque spinal cord: a quantitative electron microscope study.Journal of Comparative Neurology 184, 643–84.

    PubMed  Google Scholar 

  • Ralston, H. J., III, Ohara, P. T., Ralston, D. D. &Chazal, G. (1987) The projection of the dorsal column nuclei and the spinal cord to neurons of the primate ventrobasal (VB) thalamus.Society for Neuroscience Abstracts 271, 985.

    Google Scholar 

  • Ramón Y Cajal, S. R. (1909)Histologie du système nerveux de l'Homme et des Vertébrés. Paris: Maloine. Rpt Madrid: Institute Cajal, 1972.

    Google Scholar 

  • Ribeiro-Da-Silva, A. &Coimbra, A. (1982) Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord.Journal of Comparative Neurology 209, 176–86.

    PubMed  Google Scholar 

  • Rinaman, L., Card, J. P., Schwaber, J. S. &Miselis, R. R. (1989) Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat.Journal of Neuroscience 9, 1985–96.

    PubMed  Google Scholar 

  • Ruda, M. A. &Gobel, S. (1980) Ultrastructural characterization of axonal endings in the substantia gelatinosa which take up [3H] serotonin.Brain Research 184, 57–83.

    PubMed  Google Scholar 

  • Rustioni, A. &Sotelo, C. (1974) Synaptic organization in the nucleus gracilis of the cat. Experimental identification of dorsal root fibres and cortical afferents.Journal of Comparative Neurology 155, 441–68.

    PubMed  Google Scholar 

  • Sawchenko, P. E. (1983) Central connections of the sensory and motor nuclei of the vagus nerve.Journal of the Autonomic Nervous System 9, 13–26.

    PubMed  Google Scholar 

  • Shapiro, R. E. &Miselis, R. R. (1985) The central organization of the vagus nerve innervating the stomach of the rat.Journal of Comparative Neurology 238, 473–88.

    PubMed  Google Scholar 

  • Taber, E. (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat.Journal of Comparative Neurology 116, 27–69.

    PubMed  Google Scholar 

  • Takayama, K., Ishikawa, N. &Miura, M. (1982) Sites of origin and termination of gastric vagus preganglionic neurons: an HRP study in the rat.Journal of the Autonomie Nervous System 6, 211–23.

    Google Scholar 

  • Torvik, A. (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures: an experimental study in the rat.Journal of Comparative Neurology 106, 51–141.

    PubMed  Google Scholar 

  • Van Der Kooy, D., McGinty, J. F., Koda, L. Y., Gerfen, C. R. &Bloom, F. E. (1982) Visceral cortex: a direct connection from prefrontal cortext to the solitary nucleus in rat.Neuroscience Letters 33, 123–7.

    PubMed  Google Scholar 

  • Van Der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. &Bloom, F. E. (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat.Journal of Comparative Neurology 224, 1–24.

    PubMed  Google Scholar 

  • Walberg, F. (1965) Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization.Experimental Neurology 13, 218–31.

    PubMed  Google Scholar 

  • Westrum, L. E. &Black, R. G. (1971) Fine structural aspects of the synaptic organization of the spinal trigeminal nucleus (pars interpolaris) of the cat.Brain Research 25, 265–87.

    PubMed  Google Scholar 

  • Wilson, C. P., Groves, P. M. &Fifkova, E. (1977) Monoaminergic synapses, including dendro-dendritic synapses in the rat substantia nigra.Experimental Brain Research 30, 161–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazal, G., Baude, A., Barbe, A. et al. Ultrastructural organization of the interstitial subnucleus of the nucleus of the tractus solitarius in the cat: Identification of vagal afferents. J Neurocytol 20, 859–874 (1991). https://doi.org/10.1007/BF01190465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190465

Keywords

Navigation