Skip to main content
Log in

Phosphorylated neurofilament epitopes in neuronal perikarya in the septum, mesencephalon and dorsal root ganglia of mammals and birds

  • Published:
Journal of Neurocytology

Summary

We and other researchers have previously described the presence of axon-specific phosphorylated neurofilament epitopes in the cell bodies of three neuronal types in the rat: bipolar septofimbrial neurons and the large light A-type cells in the dorsal root ganglia and the mesencephalic nucleus of the Vth nerve. This spontaneous presence of phosphorylated neurofilaments at the level of the perikaryon contrasts with the induced appearance of these epitopes in axotomized neurons. We have undertaken a study of this phenomenon in rat, mouse, gerbil, rabbit, pig and chicken to analyse its species distribution. Phosphorylated neurofilament positive perikarya could be detected in the dorsal root ganglia and mesencephalic nucleus of the Vth nerve in all analysed species. Although this labelling has been shown to be specific for A-type cells in rat, in pig small cells were preferentially labelled, whereas the largest cells were mostly completely devoid of label. In the septofimbrial nucleus, phosphorylated neurofilament positive perikarya were seen in rat, mouse, gerbil and rabbit. In the pig, only a phosphatase-insensitive neurofilament antibody labelled these neurons. In the chicken, the labelling was completely absent. These observations establish the widespread species distribution of perikaryal phosphorylated neurofilament epitopes in the dorsal root ganglia and mesencephalic nucleus of the Vth nerve. In the septofimbrial nucleus however, this phenomenon seems to be restricted to rodents and lagomorphs. We discuss possible explanations for these cytoskeletal singularities in dorsal root ganglia, the mesencephalic nucleus of the Vth nerve and septofimbrial neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderton, B. H., Breinburg, D., Downes, M. J., Green, P. J., Tomlinson, B. E., Ulrich, J., Wood, J. N. &Kahn, J. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants.Nature 298, 84–6.

    PubMed  Google Scholar 

  • Berglund, A. M. &Ryugo, D. K. (1986) A monoclonal antibody labels type II neurons of the spiral ganglion.Brain Research 383, 327–32.

    PubMed  Google Scholar 

  • Berglund, A. M. &Ryugo, D. K. (1991) Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea.Journal of Comparative Neurology 306, 393–408.

    PubMed  Google Scholar 

  • Brion, J. P., Cheetham, M. E., Couck, A. M., Flament-Durand, J., Hanger, D. P. &Anderton, B. H. (1990) Characterization of a partial cDNA specific for the high molecular weight microtubule-associated protein MAP2 that encodes epitopes shared with paired helical filaments of Alzheimer's disease.Dementia 1, 304–15.

    Google Scholar 

  • Calvert, R. &Anderton, B. H. (1982)In vivo metabolism of mammalian neurofilament polypeptides in developing and adult rat brain.FEBS Letters 145, 171–5.

    PubMed  Google Scholar 

  • Carden, M. J., Schlaepfer, W. W. &Lee, V. M.-Y. (1985) The structure, biochemical properties and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state.Journal of Biological Chemistry 260, 9805–17.

    PubMed  Google Scholar 

  • Coleman, M. P. &Anderton, B. H. (1990) Phosphatedependent monoclonal antibodies to neurofilaments and Alzheimer neurofibrillary tangles recognize a synthetic phosphopeptide.Journal of Neurochemistry 54, 1548–55.

    PubMed  Google Scholar 

  • Cork, L. C., Troncoso, J. C., Klavano, G. G., Johnson, E. S., Sternberger, L. A., Sternberger, N. H. &Price, D. L. (1988) Neurofilamentous abnormalities in motor neurons in spontaneously occurring animal disorders.Journal of Neuropathology and Experimental Neurology 47, 420–31.

    PubMed  Google Scholar 

  • Dahl, D., Labkovsky, B. &Bignami, A. (1988) Neurofilament phosphorylation in axons and perikarya: immuno-fluorescence study of the rat spinal cord and dorsal root ganglia with monoclonal antibodies.Journal of Comparative Neurology 271, 445–50.

    PubMed  Google Scholar 

  • Debus, E., Weber, K. &Osborn, M. (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and each of the neurofilament triplet polypeptides.Differentiation,25, 193–203.

    PubMed  Google Scholar 

  • Dickson, D. W., Yen, S.-M., Suzuki, K. I., Davies, P. &Garcia, J. H. (1986) Ballooned neurons in select neuro-degenerative diseases contain phosphorylated neurofilament epitopes.Acta Neuropathologica 71, 216–23.

    PubMed  Google Scholar 

  • Doucet, J.-P., Murphy, B. J. &Tuana, B. S. (1990) Modification of a discontinuous and highly porous sodium dodecyl sulfate-polyacrylamide gel system for minigel electrophoresis.Analytical Biochemistry 190, 209–11.

    PubMed  Google Scholar 

  • Eaker, E. Y., Shaw, G. &Sninsky, C. A. (1990) Neurofilament immunoreactivity in myenteric neurons differs from that found in the central nervous system.Gastroenterology 99, 1364–71.

    PubMed  Google Scholar 

  • Geisler, N., Kaufman, E., Fisher, S., Pleasmann, U. &Weber, K. (1983) Neurofilament structure combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins.EMBO Journal 2, 1295–302.

    PubMed  Google Scholar 

  • Glicksman, M. A., Soppet, D. &Willard, M. B. (1987) Posttranslational modification of neurofilament polypeptides in rabbit retina.Journal of Neurobiology 18, 167–96.

    PubMed  Google Scholar 

  • Goldstein, M. E., Cooper, H. S., Bruce, J., Carden, M. J., Lee, V. M. Y. &Schlaepfer, W. W. (1987) Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve.Journal of Neuroscience 7, 1586–94.

    PubMed  Google Scholar 

  • Griffiths, I. R., Lusk, S. A., Kyriakides, E. &Smith, S. (1993) Neurones in autonomic ganglia of normal horses contain phosphorylated neurofilaments.Journal of Comparative Pathology 108, 109–12.

    PubMed  Google Scholar 

  • Hauch, M. C., Probst, A., Ulrich, J., Kahn, J. &Anderton, B. H. (1986) Alzheimer neurofibrillary tangles contain phosphorylated and hidden neurofilament epitppes.Journal of Neurology, Neurosurgery and Psychiatry 49, 1213–20.

    Google Scholar 

  • Itoh, T., Sobue, G., Ken, E., Mitsuma, T., Takahashi, A. &Trojanowski, J. Q. (1992) Phosphorylated high molecular weight neurofilament protein in the peripheral motor, sensory and sympathetic neuronal perikarya: system-dependent normal variations and changes in amyotrophic lateral sclerosis and multiple system atrophy.Acta Neuropathologica 83, 240–5.

    PubMed  Google Scholar 

  • Kai-Kai, M. A., Anderton, B. H. &Keen, P. (1986) A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and that containing substance P, fluoride-resistant acid phosphatase or neurofilament protein.Neuroscience 18, 475–86.

    PubMed  Google Scholar 

  • Klosen, P., Goemaere-Vanneste, J., Terao, E. &Van Den Bosch De Aguilar, P. (1989) Approche expérimentale des manifestations de la démence sénile.Acta Neurologica Belgica 89, 294–9.

    PubMed  Google Scholar 

  • Klosen, P., Anderton, B. H., Brion, J.-P. &Van Den Bosch De Aguilar, P. (1990) Perikaryal neurofilament phosphorylation in axotomized and 6-OH-dopaminelesioned CNS neurons.Brain Research 526, 259–69.

    PubMed  Google Scholar 

  • Klosen, P. &Van Den Bosch De Aguilar, P. (1992) Spontaneous perikaryal neurofilament phosphorylation in the septofimbrial nucleus of the rat.Neuroscience Letters 139, 108–13.

    PubMed  Google Scholar 

  • Klosen, P., Maessen, X. &Van Den Bosch De Aguilar, P. (1993) PEG Embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing.Journal of Histochemistry and Cytochemistry 41, 455–63.

    PubMed  Google Scholar 

  • Koliatsos, V. E., Applegate, M. D., Kitt, C. A., Walker, L. C., De Long, M. R. &Price, D. L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fimbria-fornix.Brain Research 482, 205–18.

    PubMed  Google Scholar 

  • Ksiezak-Reding, H., Dickson, D. W., Davies, P. &Yen, S. H. (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles.Proceedings of the National Academy of the Sciences (USA) 84, 3410–14.

    Google Scholar 

  • Lawson, S. N., Harper, A. A., Harper, E. I., Garson, J. A. &Anderton, B. H. (1984) A monoclonal antibody against neurofilament protein specifically labels a sub-population of rat sensory neurons.Journal of Comparative Neurology 228, 263–72.

    PubMed  Google Scholar 

  • Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W. &Trojanowski, J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.Journal of Neuroscience 7, 3474–88.

    PubMed  Google Scholar 

  • Lewis, S. A. &Nixon, R. A. (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.Journal of Cell Biology 107, 2689–701.

    PubMed  Google Scholar 

  • Manetto, V., Sternberger, N. H., Perry, G., Sternberger, L. A. &Gambetti, P. (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis.Journal of Neuropathology and Experimental Neurology 47, 642–53.

    PubMed  Google Scholar 

  • Martin, J. E., Mather, K. S., Swash, M., Garofalo, O., Dale, G. E., Leigh, P. N. &Anderton, B. H. (1990) Spinal cord trauma in man: studies of phosphorylated neurofilament and ubiquitin expression.Brain 113, 1553–62.

    PubMed  Google Scholar 

  • Mclean, I. &Nakane, P. K. (1974) Periodate-lysine-paraformaldehyde fixative — a new fixative for immuno-electron-microscopy.Journal of Histochemistry and Cytochemistry 22, 1077–83.

    Google Scholar 

  • Miller, C. C. J., Brion, J. P., Calvert, R., Chin, T. K., Eagles, P. A. M., Downes, M. J., Flament-Durand, J., Hauch, M., Kahn, J., Probst, A., Ulrich, J. &Anderton, B. H. (1986) Alzheimer's paired helical filaments share epitopes with neurofilament side arms.EMBO Journal 5, 269–76.

    PubMed  Google Scholar 

  • Moss, T. H. &Lewkowicz, S. J. (1983) The axon reaction in motor and sensory neurones of mice studied by a monoclonal antibody marker of neurofilament protein.Journal of Neurological Sciences 60, 267–80.

    Google Scholar 

  • Munoz, D. G., Greene, C., Perl, D. P. &Selkoe, D. J. (1988) Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients.Journal of Neuropathology and Experimental Neurology 47, 9–18.

    PubMed  Google Scholar 

  • Nakazato, Y., Hirato, J., Ishida, Y., Hoshi, S., Hasegawa, M. &Fukuda, T. (1990) Swollen cortical neurons in Creutzfeldt-Jakob disease contain a phosphorylated neurofilament epitope.Journal of Neuropathology and Experimental Neurology 49, 197–205.

    PubMed  Google Scholar 

  • Nixon, R. A., Brown, B. A. &Marotta, C. A. (1982) Posttranslational modification of a neurofilament protein during axonal transport: implications for regional specialization of CNS axons.Journal of Cell Biology 94, 150–8.

    PubMed  Google Scholar 

  • Nixon, R. A. &Lewis, S. E. (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neuronsin vivo.Journal of Biological Chemistry 261, 16298–301.

    PubMed  Google Scholar 

  • Nixon, R. A., Lewis, S. E., Dahl, D., Marotta, C. A. &Draeger, U. C. (1989) Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal site and time course in relation to subunit polymerization and axonal transport.Molecular Brain Research 5, 93–108.

    PubMed  Google Scholar 

  • Nukina, N., Kosik, K. S. &Selkoe, D. J. (1987) Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein.Proceedings of the National Academy of the Sciences (USA) 84, 3415–19.

    Google Scholar 

  • Perry, M. J., Lawson, S. N. &Robertson, J. (1991) Neurofilament immunoreactivity in populations of rat primary afferent neurons: a quantitative study of phosphorylated and non-phosphorylated subunits.Journal of Neurocytology 20, 746–58.

    PubMed  Google Scholar 

  • Perry, M. J. &Lawson, S. N. (1993) Neurofilament in feline primary afferent neurones: a quantitative immunocytochemical study.Brain Research 607, 307–13.

    PubMed  Google Scholar 

  • Poltorak, M. &Freed, W. J. (1987) Normal neuronal cell bodies of the nucleus tractus mesencephalici nervi trigemini react with antibodies against phosphorylated epitopes on neurofilaments.Experimental Neurology 97, 735–8.

    PubMed  Google Scholar 

  • Romand, R., Hafidi, A. &Despres, G. (1988) Immunocytochemical localization of neurofilament protein subunits in the spiral ganglion of the rat.Brain Research 462, 167–73.

    PubMed  Google Scholar 

  • Rosenfeld, J., Dorman, M. E., Griffin, J. W., Sternberger, L. A., Sternberger, N. H. &Price, D. L. (1987) Distribution of neurofilament antigens after axonal injury.Journal of Neuropathology and Experimental Neurology 46, 269–82.

    PubMed  Google Scholar 

  • Shaw, G., Debus, E. &Weber, K. (1984) The immunological relatedness of neurofilament proteins of higher vertebrates.European Journal of Cell Biology 34, 130–6.

    PubMed  Google Scholar 

  • Shaw, G., Osborn, M. &Weber, K. (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments.European Journal of Cell Biology 42, 1–9.

    PubMed  Google Scholar 

  • Shaw, G., Winialski, D. &Reier, P. (1988) The effect of axotomy and deafferentation on phosphorylation dependent antigenicity of neurofilaments in rat superior cervical ganglion neurons.Brain Research 460, 227–34.

    PubMed  Google Scholar 

  • Shaw, G. (1991) Neurofilament proteins. InThe Neuronal Cytoskeleton (edited byBurgoyne, R. D.) pp. 185–214. New York: Wiley-Liss.

    Google Scholar 

  • Soppet, D. R., Beasley, L. L. &Willard, M. B. (1992) Evidence for unequal crossing over in the evolution of the neurofilament polypeptide H.Journal of Biological Chemistry 267, 17354–61.

    PubMed  Google Scholar 

  • Sternberger, L. A. &Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilamentsin situ.Proceedings of the National Academy of the Sciences (USA) 80, 6126–30.

    Google Scholar 

  • Toyoshima, I., Yamamoto, A. &Satake, M. (1988) Processing of neurofilament proteins from perikaryal to axonal type.Neurochemical Research 13, 621–4.

    PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of the Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Van Den Bosch De Aguilar, P. &Vanneste, J. (1981) Etude ultrastructurale des neurones ganglionaires spinaux au cours du vieillissement chez le rat.Acta Anatomica 110, 59–70.

    PubMed  Google Scholar 

  • Van Den Bosch De Aguilar, P. &Goemaere-Vanneste, J. (1984) Paired helical filaments in spinal ganglion neurons of elderly rats.Virchows Archiv B (Cellular Pathology) 47, 217–22.

    Google Scholar 

  • Van Den Bosch De Aguilar, P., Goemaere-Vanneste, J., Klosen, P. &Terao, E. (1992) Ageing changes of spinal ganglion neurons. InDevelopment and Involution of Neurones (edited byFujisawa, K. &Morimatsu, Y.) pp. 111–51. Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Vickers, J. C., Costa, M., Vitadello, M., Dahl, D. &Marotta, C. A. (1990) Neurofilament protein-triplet immunoreactivity in distinct subpopulations of peptide-containing neurons in the guinea-pig coeliac ganglion.Neuroscience 39, 743–59.

    PubMed  Google Scholar 

  • Vickers, J. C. &Costa, M. (1991) Neurofilament protein triplet immunoreactivity in the dorsal root ganglia of the guinea-pig.Cell and Tissue Research 265, 159–67.

    PubMed  Google Scholar 

  • Willard, M. B. (1976) Genetically determined protein polymorphism in the rabbit nervous system.Proceedings of the National Academy of the Sciences (USA) 73, 3641–5.

    Google Scholar 

  • Zaman, Z. &Verwilghen, R. L. (1979) Quantitation of proteins solubilized in sodium dodecyl sulfate-mercaptoethanol-tris electrophoresis buffer.Analytical Biochemistry 100, 64–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klosen, P., Van Den Bosch De Aguilar, P. Phosphorylated neurofilament epitopes in neuronal perikarya in the septum, mesencephalon and dorsal root ganglia of mammals and birds. J Neurocytol 23, 297–311 (1994). https://doi.org/10.1007/BF01188498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188498

Keywords

Navigation