Skip to main content
Log in

A d.c. plasma-fluidized bed reactor for the production of calcium carbide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Up to now, calcium carbide has been produced on an industrial scale exclusively by the electrothermal method. Very high-temperature operation should be used, and this results in high capital, and some serious environmental problems if open or half-covered furnaces are used. A chemical equilibrium calculation conducted in this laboratory shows that if we add a certain amount of argon into the precursors, the required temperature for chemical equilibrium of the system can be reduced to 1400–1500 °C. We have been guided to develop a d.c. plasma-heated fluidized bed for the preparation of calcium carbide. Preliminary experiments include cold fluidization, measurement of heat-transfer coefficient, production of calcium carbide and measurement of conversion rate. It was found that 84.3% conversion is reached in an argon atmosphere under atmospheric pressure and an operation temperature of 1400–1450 °C. X-ray diffraction analysis and SEM show that the generated calcium carbide is of good quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helmut Von Zeppelin, Molhin, Heinz Kalhammer, Waldshut andKlaus Hohmann, Swiss Pat. 437 228 (1967).

  2. M. Frankl, US Pat. 2131 102 (1938).

  3. Bois Eastman, US Pat. 3 017 259 (1920).

  4. Bruce H. Sage, US Pat. 3 044 858 (1962).

  5. N. V. Stamicarbon, Br. Pat. 863 191 (1959).

  6. Idem, Br. Pat. 737 857 (1955).

  7. Kes Van Loon, US Pat. 2 814 478 (1957).

  8. “Ullmann's Encyclopedia of Industrial Chemistry”, Vol. 4 (VCH, Deerfield Beach, USA, 1985).

  9. S. Kiritani andT. Nishimaki,Chem. Economy Eng. Rev. 16(5) (1984) 27.

    Google Scholar 

  10. S. Morooka, T. Okubo andK. Kusakabe,Powd. Technol. 63 (1990) 105.

    Google Scholar 

  11. T. Okubo, H. Kawamura, K. Kusakabe andS. Morooka,J. Am. Ceram. Soc. 73 (1991) 1150.

    Google Scholar 

  12. H. Kawamura,J. Mater. Sci. Lett. 9 (1990) 1033.

    Google Scholar 

  13. M. Nikravech, L. Outifa andJ. E. Amouroux, “Plasma-fluidized bed hydrocracking process of heavy hydrocarbons”, ISPC-9 Japan (1989).

  14. Ph. Arnould, S. Cavadias, J. Amouroux andP. H. Arnould, “The interaction of a fluidized bed with a thermal plasma. Application to the limestone decomposition”, 7th International Symposium of Plasma Chemistry, Eindhoven, July 1985.

  15. A. N. Efimov, M. I. Zhikharev andYu. P. Zhirnov,At. Energ. 39 (1975) 416.

    Google Scholar 

  16. S. Gorden andB. J. McBride, NASA SP-237 (1976).

  17. D. R. Stull andH. Prophet (eds), “JANAF Thermochemical Tables”, 2nd Edn (1971).

  18. C. W. Zhu, G. Y. Zhao andV. Hlavacek,J. Mater. Sci. 27 (1992) 2211.

    Google Scholar 

  19. R. R. Pattipati andC. Y. Wen,Ind. Eng. Chem. Process Des. Dev. 20 (1981) 705.

    Google Scholar 

  20. Herold Y. Atwell andN. Y. Fishkill, US. Pat. 3 017 244 (1962).

  21. H. S. Mickley,A.I.Ch.E.J. September (1955).

  22. J. S. M. Botterill,A.I.Ch.E. Symp. Ser. 208 77 (1881) 330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C.W., Zhao, G.Y. & Hlavacek, V. A d.c. plasma-fluidized bed reactor for the production of calcium carbide. J Mater Sci 30, 2412–2419 (1995). https://doi.org/10.1007/BF01184594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184594

Keywords

Navigation