Skip to main content
Log in

Picosecond laser heating and melting of graphite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Ultrashort laser pulses impinging onto solid, strongly absorbing surface deposit their energy within an absorption depth from the surface. This localized energy deposition may result in rapid and very efficient heating of the surface to temperatures far exceeding the melting or boiling point. Temperature evolution at the surface of samples and their electronic structure may be studied with nonperturbing, time-resolved optical diagnostic techniques. Picosecond laser pulses provide the fastest means for heating matter at high temperature, since the characteristic energy transfer times from photoexcited electrons to the lattice occur in this time scale. Surface evaporation is not affecting the observations in this time scale, simply because there is no time for the surface atoms to escape. As an illustration, measurements on graphite are presented here. The complex index of refraction of highly oriented pyrolytic graphite (HOPG) during picosecond laser irradiation has been measured at 1.06 μm via time-resolved ellipsometry at angles of incidence up to 80∘. In particular, a value of the complex index of refraction for the liquid phase has been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bloembergen,Mat. Res. Soc. Symp. Proc. 51:3 (1986).

    Google Scholar 

  2. J. Fujimoto, Private communication.

  3. J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen,Mat. Res. Soc. Symp. Proc. 4:23 (1982).

    Google Scholar 

  4. G. E. Gellison, Jr., and D. H. Lowndes,Appl. Phys. Lett. 48:721 (1986).

    Google Scholar 

  5. P. M. Fauchet and W. L. Nigham, Jr.,Appl. Phys. Lett. 48:785 (1986).

    Google Scholar 

  6. A. G. Whittaker, P. L. Kitner, L. S. Nelson, and N. Richardson,Aerospace Corp. Rep. No. SD-TR-81-60 (unpublished).

  7. T. Venkatesan, D. C. Jacobson, J. M. Gibson, E. S. Elman, G. Braunstein, M. S. Dresselhaus, and G. Dresselhaus,Phys. Rev. Lett. 53:360 (1984).

    Google Scholar 

  8. J. Steinbeck, G. Braunstein, J. Speck, M. S. Dresselhaus, C. Y. Huang, A. M. Malvezzi, and N. Bloembergen,Mat. Res. Soc. Symp. Proc. 74:263 (1987).

    Google Scholar 

  9. C. Y. Huang, A. M. Malvezzi, N. Bloembergen, and J. M. Liu,Mat. Res. Soc. Proc. 51:245 (1986).

    Google Scholar 

  10. A. M. Malvezzi, N. Bloembergen, and C. Y. Huang,Phys. Rev. Lett. 57:146 (1986).

    Google Scholar 

  11. J. Heremans, C. H. Olk, G. L. Eesley, J. Steinbeck, and G. Dresselhaus,Phys. Rev. Lett. 60:452 (1988).

    Google Scholar 

  12. E. A. Taft and H. R. Philipp,Phys. Rev. 138:A197 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malvezzi, A.M. Picosecond laser heating and melting of graphite. Int J Thermophys 11, 797–809 (1990). https://doi.org/10.1007/BF01184346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184346

Key words

Navigation