Skip to main content
Log in

Protein gene product 9.5 in the developing cochlea of the rat: cellular distribution and relation to the cochlear cytoskeleton

  • Published:
Journal of Neurocytology

Summary

Protein gene product 9.5 was immunolocalized in the adult and early postnatal (P2-P15) rat cochlea, and its distribution compared with a 200 kDa highly phosphorylated neurofilament subunit (neurofilament 200) and α-tubulin. In the adult, Protein gene product 9.5 was expressed exclusively in cochlear nerve fibres and ganglion cells, a small percentage of these (Type II ganglion cells and olivocochlear bundle fibres) being intensely positive for both protein gene product and neurofilament 200. In postnatal development, pillar and Deiters' cells were at first (P2-P15) strongly positive for protein gene product 9.5, and hair cells moderately so. At P2, all nerve fibres and ganglion cells showed co-expression of protein gene product 9.5 and neurofilament 200, but at later stages, the subset of intensely co-labelled neurons appeared, nerve fibres at P7 onwards and ganglion cells from P12. There was no overt correlation between the onset of protein gene product 9.5 and a-tubulin expression in any cochlear component. Protein gene product 9.5 expression in ganglion cells was at first (P2 and P7) mainly nuclear, and later also cytoplasmic. It is concluded that there is a clear correlation of high levels of protein gene product 9.5 and neurofilament protein expression, and that protein gene product 9.5 is expressed in some non-neuronal cells of the cochlea during its early development, persisting until after hearing has commenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, R. A., Reeks, K. A., Marangos, P. J. &Fex, J. (1985) Neuron-specific enolase-like immunoreactivity in inner hair cells but not outer hair cells in the guinea pig organ of Corti.Brain Research 327, 379–84.

    PubMed  Google Scholar 

  • Anniko, M., Thornell, L. E., Gustafsson, H. &Virtanen, I. (1986) Intermediate filaments in the newborn inner ear of the mouse.Oto-Rhino-Laryngology 48, 98–106.

    Google Scholar 

  • Anniko, M., Thornell, L. E. &Virtanen, I. (1987) Cytoskeletal organization of the human ear.Acta Otolaryngologica Supplement 437, 1–76.

    Google Scholar 

  • Anniko, M., Thornell, L. E., Hultcrantz, M. &Virtanen, I. (1989a) Cytoskeletal identification of intermediate filaments in the inner ear of the Jerker mouse mutant.Acta Otolaryngologica 107, 191–201.

    Google Scholar 

  • Anniko, M., Thornell, L. E., Ramaekers, F. C. S. &Stigbrand, I. (1989b) Cytokeratin diversity in epithelia of the human inner ear.Acta Otolaryngologica 108, 385–6.

    Google Scholar 

  • Baxter, R., Bannister, L. H. &Dodson, H. C. (1992) Immunohistological localisation of protein gene product (PGP) 9.5 in the developing cochlea of the rat (abstract).British Journal of Audiology 26, 182–3.

    Google Scholar 

  • Berglund, A. C. &Ryugo, D. K. (1986) A monoclonal antibody labels type II neurons of the spiral ganglion.Brain Research 383, 327–32.

    PubMed  Google Scholar 

  • Bond, U. &Schlesinger, M. J. (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts.Molecular and Cellular Biology 5, 949–59.

    PubMed  Google Scholar 

  • Dalsgaard, C. J., Rydh, M. &Haegerstrand, A. (1989) Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies.Histochemistry 92, 385–90.

    PubMed  Google Scholar 

  • Dau, J. &Wenthold, R. J. (1989) Immunocytochemical localization of neurofilament subunits in the spiral ganglion of normal and neomycin-treated guinea pigs.Hearing Research 42, 253–63.

    PubMed  Google Scholar 

  • Dechesne, C. J. &Pujol, R. (1986) Neuron-specific enolase immunoreaactivity in the developing mouse cochlea.Hearing Research 21, 87–90.

    PubMed  Google Scholar 

  • Dechesne, C. J., Kim, H. N., Nowak, T. S. &Wenthold, R. J. (1992) Expression of a heat shock protein, HSP 72 in the guinea pig and rat cochlea after hyperthermia: immunochemical and in situ hybridization analysis.Hearing Research 59, 195–204.

    PubMed  Google Scholar 

  • DesprÉs, G., Hafidi, A. &Romand, R. (1991) Immunohistochemical localization of nerve growth factor receptor in the cochlea and in the brainstem of the perinatal rat.Hearing Research 52, 157–66.

    PubMed  Google Scholar 

  • Doran, J. F., Jackson, P., Kynoch, P. A. &Thompson, R. J. (1983) Isolation of PGP 9.5, a new neurone-specific protein detected by high-resolution two-dimensional electrophoresis.Journal of Neurochemistry 40, 1542–7.

    PubMed  Google Scholar 

  • Flock, A., Bretscher, A. &Weber, K. (1982) Immunohistochemical localization of several Cytoskeletal proteins in inner ear sensory and supporting cells.Hearing Research 6, 75–89.

    Google Scholar 

  • Furness, D. N., Hackney, C. M. &Steyger, P. S. (1990) Organization of microtubules in cochlear hair cells.Journal of Electron Microscopy Technique 15, 261–79.

    Google Scholar 

  • Gulbenkian, S., Wharton, J. &Polak, J. M. (1987) The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5).Journal of the Autonomic Nervous System 18, 235–47.

    PubMed  Google Scholar 

  • Honore, B., Rasmussen, H. H., Vandekerckhove, J. &Celis, J. E. (1991) Neuronal protein gene product 9.5 (IEF SSP 6104) is expressed in cultured human MRC-5 fibroblasts of normal origin and is strongly down-regulated in their SV40 transformed counterparts.FEBS Letters 280, 235–10.

    PubMed  Google Scholar 

  • Kasper, M., Stosiek, P., Varga, A. &Karsten, U. (1987) Immunohistochemical demonstration of the coexpression of vimentin and cytokeratin(s) in the guinea pig cochlea.Archives of Otorhinolaryngology 244, 66–8.

    Google Scholar 

  • Kent, C. &Clarke, P. J. (1991) The immunolocalisation of the neuroendocrine specific protein PGP 9.5 during neurogenesis in the rat.Developmental Brain Research 58, 147–50.

    PubMed  Google Scholar 

  • Kraus, H. J. &Aulbach-Kraus, J. (1981) Morphological changes in the cochlea of the mouse after the onset of hearing.Hearing Research 4, 89–102.

    PubMed  Google Scholar 

  • Kuijpers, W., Tonnaer, E. L. G. M., Peters, T. A. &Ramaekers, F. C. S. (1991) Expression of intermediate filament proteins in the mature inner ear of the rat and guinea pig.Hearing Research 52, 133–6.

    PubMed  Google Scholar 

  • Lawson, S. N., Harper, A. A., Harper, E. I., Garson, J. A. &Anderton, B. H. (1984) A monoclonal antibody against neurofilament protein specifically labels a sub-population of rat sensory neurons.Journal of Compartive Neurology 228, 263–72.

    Google Scholar 

  • Monia, B. P., Ecker, D. J. &Crooke, S. T. (1990) New perspectives on the structure and function of ubiquitin.Biotechnology 8, 209–15.

    Google Scholar 

  • Müller, M. (1991) Developmental changes of frequency representation in the rat cochlea.Hearing Research 56, 1–7.

    PubMed  Google Scholar 

  • Neely, J. G., Thompson, A. M. &Gower, D. J. (1991) Detection and localization of heat shock protein 70 in the normal guinea pig cochlea.Hearing Research 52, 403–6.

    PubMed  Google Scholar 

  • Nixon, R. A. &Sihag, R. K. (1991) Neurofilament phosphorylation: a new look at regulation and function.Trends in Neurosciences 14, 501–6.

    PubMed  Google Scholar 

  • Pirvola, U., Lehtonen, E. &Ylikoski, J. (1991) Spatiotemporal development of cochlear innervation and hair cell differentiation in the rat.Hearing Research 52, 345–55.

    PubMed  Google Scholar 

  • Pujol, R. (1986) Synaptic plasticity in the developing cochlea. InThe Biology of Change in Otolaryngology (edited byRuben, R. &Van Der Water, T. R.) pp. 47–54. New York: Elsevier Science Publishers BV (Biomedical Division).

    Google Scholar 

  • Raphael, Y., Marshak, G., Barash, A. &Geiger, B. (1987) Modulation of intermediate filament expression in developing cochlear epithelium.Differentiation 35, 151–62.

    PubMed  Google Scholar 

  • Rasmussen, G. L. (1953) Further observations of the efferent cochlear bundle.Journal of Comparative Neurology 99, 61–74.

    PubMed  Google Scholar 

  • Romand, R. (1983) Development of the cochlea and vestibular systems. InDevelopment of Auditory and Vestibular Systems (edited byRomand, R.) pp. 47–88. New York: Academic Press.

    Google Scholar 

  • Romand, R., Hafidi, A. &Després, G. (1988) Immuno-histochemical localization of neurofilament protein sub-units in the spiral ganglion of the rat.Brain Research 462, 167–73.

    PubMed  Google Scholar 

  • Romand, R., Sobkowicz, H., Emmerling, M., Whitlon, D. &Dahl, D. (1990) Patterns of neurofilament stain in the spiral ganglion of the developing and adult mouse.Hearing Research 49, 119–26.

    PubMed  Google Scholar 

  • Schrott, A., Egg, G. &Spoendlin, H. (1988) Intermediate filaments in the cochlea of normal and mutant (w/w, sl/sl) mice.Archives of Otolaryngology 245, 250–4.

    Google Scholar 

  • Schwartz, A. M. (1986) Auditory nerve and spiral ganglion cells. Morphology and organization. InNeurobiology of Hearing: The Cochlea (edited byAltschuler, R. A., Hoffman, D. W. &Bobbin, R. P.) pp. 271–82. New York: Raven Press.

    Google Scholar 

  • Slepecky, N. B. &Ulfendahl, M. (1992) Actin-binding and microtubule-associated proteins in the organ of Corti.Hearing Research 57, 201–15.

    PubMed  Google Scholar 

  • White, J. S. &Warr, W. B. (1983) The dual origin of the olivo-cochlear bundle in the albino rat.Journal of Comparative Neurology 219, 203–14.

    PubMed  Google Scholar 

  • Whitlon, D. S. &Sobkowicz, H. M. (1988) Neuron-specific enolase during the development of the organ of Corti.International Journal of Developmental Neuroscience 6, 77–87.

    PubMed  Google Scholar 

  • Wikstrom, S. O., Anniko, M., Thornell, L. E. &Virtanen, I. (1988) Developmental stage-dependent pattern of inner ear expression of intermediate filaments.Acta Otolaryngologica 106, 71–80.

    Google Scholar 

  • Wilkinson, K. D., Lee, K., Deshpande, S., Duerksenhughes, P., Boss, J. M. &Pohl, J. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase.Science 246, 670–3.

    PubMed  Google Scholar 

  • Wilson, P. O., Barber, P. C., Hamid, Q. A., Power, B. F., Dhillon, A. P., Rode, J., Day, I. N., Thompson, R. J. &Polak, J. M. (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies.British Journal of Experimental Pathology 69, 91–104.

    PubMed  Google Scholar 

  • Wood, J. N. &Anderton, B. H. (1981) Monoclonal antibodies to mammalian neurofilaments.Bioscience Reports 1, 263–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, R., Bannister, L.H., Dodson, H.C. et al. Protein gene product 9.5 in the developing cochlea of the rat: cellular distribution and relation to the cochlear cytoskeleton. J Neurocytol 22, 14–25 (1993). https://doi.org/10.1007/BF01183972

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183972

Keywords

Navigation