Skip to main content
Log in

Continuum slip foundations of elasto-viscoplasticity

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A continuum slip theory for dislocation glide is employed to derive macroscopic, phenomenological models for incompressible viscoplasticity. The microstructural origins of kinematic/isotropic hardening and rate-dependence are examined within the framework of the continuum slip theory of Rice and the single slip scale invariance theory of Aifantis for dislocation glide. In the process, the limitations on primitive assumptions for existing forms of state variable viscoplasticity become apparent. A form for rate-dependent evolution of backstress is derived which supports recent phenomenological approaches. Extensions to finite strain and compressible viscoplasticity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moosbrugger, J. C., McDowell, D. L.: On a class of kinematic hardening rules for nonproportional cyclic plasticity. ASME J. Engng. Mater. Techn.111, 87–98 (1989).

    Google Scholar 

  2. Moosbrugger, J. C.: A rate-dependent bounding surface model for nonproportional cyclic viscoplasticity. Ph. D. Thesis, Georgia Institute of Technology, Atlanta, GA (1988).

    Google Scholar 

  3. Lamba, H. S., Sidebottom, O. M.: Cyclic plasticity for nonproportional paths. Part 1 & 2. ASME J. Engng. Mater. Techn.100, 96–111 (1978).

    Google Scholar 

  4. Krempl, E., Lu, H.: The hardening and rate-dependent behaviour of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature. ASME J. Engng. Mater. Techn.196, 376–382 (1984).

    Google Scholar 

  5. McDowell, D. L.: On the path depdence of transient hardening and softening to stable states under complex biaxial cyclic loading. Proc. Int. Conf. on Const. Laws for Engng. Mater. (Desai, Gallagher, eds.), p. 125. Tucson, AZ 1983.

  6. Benallal, A., Marquis, D.: Constitutive equations for nonproportional cyclic elasto-viscoplasticity. ASME J. Engng. Mater. Techn.109, 326–336 (1987).

    Google Scholar 

  7. McDowell, D. L.: An evaluation of recent developments in hardening and flow rules for nonproportional cyclic plasticity. ASME J. Appl. Mech.54, 323–334 (1987).

    Google Scholar 

  8. Asaro, R. J.: Crystal plasticity. ASME J. Appl. Mech.50, 921–934 (1983).

    Google Scholar 

  9. Doong, S.-H.: A plasticity theory metals based on the dislocation substructures. Ph. D. Thesis, University of Illinois, Urbana-Champaign (1988).

    Google Scholar 

  10. James, G. H., Imbrie, P. K., Hill, P. S., Allen, D. H., Haisler, W. E.: An experimental comparison of several current viscoplastic constitutive models at elevated temperature. ASME J. Engng. Mater. Techn.109, 130–139 (1987).

    Google Scholar 

  11. McDowell, D. L., Moosbrugger, J., Doumi, M., Jordan, E. H.: Some implications for cyclic plastic and viscoplastic equations based on nonproportional loading experiments. Proc. 3rd Symp. on Nonlinear Const. Relations for High Temperature Appl., NASA, University of Akron 1986.

  12. Estrin, Y., Mecking, H. L.: A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Met.32, 57–70 (1984).

    Google Scholar 

  13. Mecking, H., Kocks, U. F.: Kinetics of flow and strain hardening. Acta Met.29, 1865–1875 (1981).

    Google Scholar 

  14. Kocks, U. F.: Laws for work-hardening and low-temperature creep. ASME J. Engng. Mater. Techn.98, 76–85 (1976).

    Google Scholar 

  15. Haasen, P.: Plastic deformation of Nickel single crystals at low temperatures. Phil. Mag.3, 384 (1958).

    Google Scholar 

  16. Shoeck, G., Seeger, A.: Defects in crystalline solids. London: Physical Society 1955.

    Google Scholar 

  17. Follansbee, P. S., Kocks, U. F.: A constitutive description of the deformation of Copper based on the use of the mechanical threshold stress as an internal state variable. Acta Met36, 81–93 (1988).

    Google Scholar 

  18. Conrad, H., de Meester, B., Yin, C., Doner, M.: Thermally activated deformation of crystalline solids. In: Rate processes in plastic deformation of metals. ASM, pp. 175–226 (1975).

  19. Arsenault, R. J., Cadman, T.: Thermally activated dislocation motion through a random array of obstacles. In: Rate processes in plastic deformation of metals. ASM, pp. 102–129 (1975).

  20. Lowe, T. C., Miller, A. K.: Improved constitutive equations for modeling strain softening. Parts 1 & 2. ASME J. Engng. Mater. Techn.106, 337–348 (1984).

    Google Scholar 

  21. Rice, J. R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids19, 433–455 (1971).

    Google Scholar 

  22. Chaboche, J. L.: Description thermodynamique et phenomologique de la viscoplasticite cyclique avec endommagement. These, Universite Paris 6 (1978).

  23. Lemaitre, J., Chaboche, J. L.: Mecanique des materiaux solides. Paris: Dunod 1985.

    Google Scholar 

  24. Aifantis, E. C.: On the microstructural origin of certain inelastic models. ASME J. Engng. Mater. Techn.106, 326 (1984).

    Google Scholar 

  25. Aifantis, E. C.: On the structure of single slip and its implications for inelasticity. In: Large deformations of solids (Gittus, Zarka, Nemat-Nasser, eds.), Chap. 17. Elsevier 1986.

  26. Aifantis, E. C.: The physics of plastic deformation. Int. J. Plasticity3, 211–247 (1987).

    Google Scholar 

  27. Bammann, D. J., Aifantis, E. C.: On a proposal for a continuum with microstructure. Acta Mech.45, 91–121 (1982).

    Google Scholar 

  28. Bammann, D. J., Aifantis, E. C.: On the perfect lattice-dislocated state interaction. Proc. Int. Symp. Mech. Behaviour of Structured Media, Carleton University, Ontario, Canada 1981.

  29. Havner, K. S.: Fundamental considerations in micromechanical modeling of polycrystalline metals at finite strain. In: Large deformations of solids (Gittus, Zarka, Nemat-Nasser, eds.), Chap. 15. Elsevier 1986.

  30. Weng, G. J.: Anisotropic hardening in single crystals and the plasticity of polycrystals. Int. J. Plasticity3, 315–339 (1987).

    Google Scholar 

  31. Phillips, A., Tang, J. L.: The effect of loading path on the yield surface at elevated temperatures. Int. J. Sol. Struct.8, 463 (1972).

    Google Scholar 

  32. Ashby, M. F.: A first report on deformation mechanism maps. Acta Met.20, 887 (1972).

    Google Scholar 

  33. McDowell, D. L., Moosbrugger, J. C.: Bounding surface interpretation of rate-dependent metallic behaviour under nonproportional loading. Proc. Int. Seminar on the Inelastic Behaviour of Solids. Models and Utilisation. Besancon, France 1988.

  34. Moosbrugger, J. C., McDowell, D. L.: A rate-dependent bounding surface model with a generalized image point for cyclic nonproportional viscoplasticity. J. Mech. Phys. Solids38, 627 (1990).

    Google Scholar 

  35. Lindholm, U. S., Chan, K. S., Bodner, S. R., Weber, R. M., Walker, K. P., Cassenti, B. N.: Constitutive models for isotropic materials (HOST), 2nd Annual Status Report, NASA CR-174980, SwRI-7576/30 (1985).

  36. Reed-Hill, R. E.: Physical metallurgy principles, 2nd ed. Van Nostrand 1973.

  37. McDowell, D. L., Stahl, D. R., Stock, S. R., Antolovich, S. D.: Biaxial path dependence of deformation substructure of type 304 stainless steel. Met. Trans. A.19A, 1277–1293 (1988).

    Google Scholar 

  38. Wang, C. C.: A new representation theorem for isotropic functions: an answer to Prof. F. G. Smith's criticism of my paper on representations for isotropic functions. Arch. Rat. Mech. Anal.36, 198–223 (1970).

    Google Scholar 

  39. Dafalias, Y.F.: Corotational rates for kinematic hardening at large plastic deformations. ASME J. Appl. Mech.50, 561 (1983).

    Google Scholar 

  40. Im, S., Atluri, S. N.: A study of two finite strain plasticity models: an internal time theory using Mandel's director concept, and a general isotropic/kinematic-hardening theory. Int. J. Plasticity3, 163–191 (1987).

    Google Scholar 

  41. Voyiadjis, G. Z., Kattan, P. I.: Eulerian constitutive model for finite deformation plasticity with anisotropic hardening. Mech. Mater.7, 279–293 (1989).

    Google Scholar 

  42. Bammann, D. J.: Modeling the temperature and strain rate dependent large deformation of metals. Appl. Mech. Rev.43, S312-S319 (1990).

    Google Scholar 

  43. Hull, D., Bacon, D. J.: Introduction to dislocations. International Series on Materials Science and Technology,37, Pergamon Press 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, D.L., Moosbrugger, J.C. Continuum slip foundations of elasto-viscoplasticity. Acta Mechanica 93, 73–87 (1992). https://doi.org/10.1007/BF01182574

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182574

Keywords

Navigation