Skip to main content
Log in

Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex

  • Published:
Journal of Neurocytology

Summary

Neurons in the monkey somatic sensory and motor cortex were labelled immunocytochemically for the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), and examined with the electron microscope. The somata and dendrites of many large GAD-positive neurons of layers III–VI receive numerous asymmetric synapses from unlabelled terminals and symmetric synapses from GAD-positive terminals. Comparisons with light and electron microscopic studies of Golgi-impregnated neurons suggest that the large labelled neurons are basket cells. Small GAD-positive neurons generally receive few synapses on their somata and dendrites, and probably conform to several morphological types. GAD-positive axons form symmetric synapses on many neuronal elements including the somata, dendrites and initial segments of pyramidal cells, and the somata and dendrites of non-pyramidal cells. Synapses between GAD-positive terminals and GAD-positive cell bodies and dendrites are common in all layers. Many GAD-positive terminals in layers III–VI arise from myelinated axons. Some of the axons form pericellular terminal nests on pyramidal cell somata and are interpreted as originating from basket cells while other GAD-positive myelinated axons synapse with the somata and dendrites of non-pyramidal cells. These findings suggest either that the sites of basket cell terminations are more heterogeneous than previously believed or that there are other classes of GAD-positive neurons with myelinated axons. Unmyelinated GAD-positive axons synapse with the initial segments of pyramidal cell axons or formen passant synapses with dendritic spines and small dendritic shafts and are interpreted as arising from the population of small GAD-positive neurons which appears to include several morphological types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, P. O., Kato, H. &Orban, G. A. (1980) Direction-selective cells in complex family in cat striate cortex.Journal of Neurophysiology 43, 1266–83.

    Google Scholar 

  • Cajal, S., Ramón, Y. (1911)Histologie du Système Nerveux de l'Homme et des Vertébrés Vol. 2 (translated byAzoulay, L.). Paris: Maloine.

    Google Scholar 

  • Chronwall, B. M. &Wolff, J. R. (1978) Classification and location of neurons taking up [3H]-GABA in the visual cortex of rats. InAmino Acids as Chemical Transmitters (edited byFonnum, F.), pp. 297–303. New York: Plenum Press.

    Google Scholar 

  • Chronwall, B. M. &Wolff, J. B. (1980) Prenatal and postnatal development of GABA-accumulating cells in the occipital neocortex of the rat.Journal of Comparative Neurology 190, 187–208.

    Google Scholar 

  • Costanzo, R. M. &Gardner, E. P. (1980) A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys.Journal of Neurophysiology 43, 1319–41.

    Google Scholar 

  • Emson, P. C. &Lindvall, O. (1979) Distribution of putative neurotransmitters in the neocortex.Neuroscience 4, 1–30.

    Google Scholar 

  • Fairén, A. &Valverde, F. (1980) A specialized type of neuron in the visual cortex of the cat: a Golgi and electron microscopic study of chandelier cells.Journal of Comparative Neurology 194, 761–80.

    Google Scholar 

  • Gardner, E. P. &Costanzo, R. M. (1980) Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys.Journal of Neurophysiology 43, 1342–54.

    Google Scholar 

  • Gatter, K. C., Sloper, J. J. &Powell, T. P. S. (1978) An electron microscopic study of the termination of intracortical axons upon Betz cells in area 4 of the monkey.Brain 101, 543–53.

    Google Scholar 

  • Hammond, P. (1978) Directional tuning of complex cells in area 17 of the teline visual cortex.Journal of Physiobgy 285, 479–91.

    Google Scholar 

  • Hamos, J. E., Davis, T. L. &Sterling, P. (1981) Several groups of neurons in layer IVab of cat area 17 accumulate [3H]-gamma-aminobutyric acid (G ABA).Society for Neuroscience Abstracts 7, 173.

    Google Scholar 

  • Hendrickson, A. E., Hunt, S. P. &Wu, J. -W. (1981) Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex.Nature 292, 605–7.

    Google Scholar 

  • Hendry, S. H. C. &Jones, E. G. (1981) Sizes and distributions of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex.Journal of Neuroscience 1, 390–408.

    Google Scholar 

  • Hökfelt, T. &Ljungdahl, Å. (1972) Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labelled gamma-aminobutyric acid ([3H]-GABA).Experimental Brain Research 14, 354–62.

    Google Scholar 

  • Holländer, H. &Vanegas, H. (1981) Identification of pericellular baskets in the cat striate cortex: light and electron microscopic observations after uptake of horseradish peroxidase.Journal of Neurocytology 10, 577–87.

    Google Scholar 

  • Houser, C. R., Hendry, S. H. C., Jones, E. G. &Vaughn, J. E. (1983) Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex.Journal of Neurocytology 12, 617–638.

    Google Scholar 

  • Jones, E. G. (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey.Journal of Comparative Neurology 194, 761–80.

    Google Scholar 

  • Jones, E. G. (1981) Anatomy of cerebral cortex: columnar input-output organization. InThe Cerebral Cortex (edited bySchmitt, F. O., Worden, F. G., Adelman, G. andDennis, M.), pp. 199–235. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jones, E. G. &Powell, T. P. S. (1970a) Electron microscopy of the somatic sensory cortex of the cat. III. The fine structure of layers III to VI.Philosophical Transactions of the Royal Society B 257, 23–8.

    Google Scholar 

  • Jones, E. G. &Powell, T. P. S. (1970b) An electron microscopic study of the laminar pattern and mode of termination of afferent fibre pathways in the somatic sensory cortex of the cat.Philosophical Transactions of the Royal Society B 257, 45–62.

    Google Scholar 

  • Krnjević, K. (1974) Chemical nature of synaptic transmission in vertebrates.Physiological Reviews 54, 318–450.

    Google Scholar 

  • Levay, S. (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations.Journal of Comparative Neurology 150, 53–86.

    Google Scholar 

  • Levay, S. &Sherk, H. (1981) The visual claustrum of the cat. I. Structure and connections.Journal of Neuroscience 1, 956–80.

    Google Scholar 

  • Marin-Padilla, M. (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study.Brain Research 14, 633–46.

    Google Scholar 

  • Marin-Padilla, M. (1971) Prenatal and early post-natal ontogenesis of the human motor cortex: a Golgi study. II. The basket-pyramidal system.Brain Research 23, 185–92.

    Google Scholar 

  • Marin-Padilla, M. (1972) Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study.Brain Research 38, 1–12.

    Google Scholar 

  • Marin-Padilla, M. (1974) Three-dimensional reconstruction of the pericellular nests (baskets) of the motor (area 4) and visual (area 17) areas of the human cerebral cortex. A Golgi study.Zeitschrift für Anatomie und Entwicklungsgeschichte 144, 123–35.

    Google Scholar 

  • Millonig, G. (1961) Advantages of a phosphate buffer for osmium tetroxide solutions in fixation.Journal of Applied Physics 32, 1637–41.

    Google Scholar 

  • Mountcastle, V. B. &Powell, T. P. S. (1959) Neural mechanisms subserving cutaneous sensibility with special reference to the role of afferent inhibition in sensory perception and discrimination.Bulletin for Johns Hopkins Hospital 105, 201–43.

    Google Scholar 

  • Orban, G. A., Kato, H. &Bishop, P. O. (1979) End-zone region in receptive fields of hypercomplex and other striate neurons in the cat.Journal of Neurophysiology 42, 818–32.

    Google Scholar 

  • Peters, A. &Kaiserman-Abramof, I. R. (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrite and spines.American Journal of Anatomy 127, 321–56.

    Google Scholar 

  • Peters, A. &Kimerer, L. M. (1981) Bipolar neurons in rat visual cortex: a combined Golgi-electron microscope study.Journal of Neurocytology 10, 921–46.

    Google Scholar 

  • Peters, A. &Proskauer, C. C. (1980) Smooth or sparsely spined cells with myelinated axons in rat visual cortex.Neuroscience 5, 2079–92.

    Google Scholar 

  • Peters, A., Proskauer, C. C., Feldman, M. L. &Kimerer, L. (1979) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi-impregnated neurons.Journal of Neurocytology 8, 331–57.

    Google Scholar 

  • Peters, A., Proskauer, C. C. &Ribak, C. E. (1982) Chandelier cells in rat visual cortex.Journal of Comparative Neurology 206, 397–416.

    Google Scholar 

  • Ribak, C. E. (1978) Aspinous and sparsely spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.Journal of Neurocytology 7, 461–78.

    Google Scholar 

  • Saito, K., Wu, J. -Y., Matsuda, T. &Roberts, E. (1974) Immunocytochemical comparisons of vertebrate glutamic acid decarboxylase.Brain Research 65, 277–85.

    Google Scholar 

  • Schiller, P. H., Finlay, B. L. &Volman, S. F. (1976) Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models.Journal of Neurophysiology 39, 1362–74.

    Google Scholar 

  • Shanks, M. F. &Powell, T. P. S. (1981) An electron microscopic study of the termination of thalamocortical fibres in areas 3b, 1 and 2 of the somatic sensory cortex in the monkey.Brain Research 218, 35–47.

    Google Scholar 

  • Sillito, A. M. (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.Journal of Physiology 250, 305–29.

    Google Scholar 

  • Sillito, A. M. (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex.Journal of Physiology 271, 699–720.

    Google Scholar 

  • Sillito, A. M. (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels.Journal of Physiology 289, 35–53.

    Google Scholar 

  • Sloper, J. J. (1973) An electron microscopic study of the neurons of the primate motor and somatic sensory cortices.Journal of Neurocytology 2, 351–9.

    Google Scholar 

  • Sloper, J. J. &Powell, T. P. S. (1979a) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices.Philosophical Transactions of the Royal Society B 285, 173–97.

    Google Scholar 

  • Sloper, J. J. &Powell, T. P. S. (1979b) An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices.Philosophical Transactions of the Royal Society B 285, 199–226.

    Google Scholar 

  • Somogyi, P. (1977) A specific axo-axonal interneuron in the visual cortex of the rat.Brain Research 136, 345–50.

    Google Scholar 

  • Somogyi, P. &Cowey, A. (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey.Journal of Comparative Neurology 195, 547–66.

    Google Scholar 

  • S Zentágothai, J. (1973) Synaptology of the visual cortex. InHandbook of Sensory Physiology Vol. VII/3 Central Processing of Visual Information, Part B. Visual Centers of the Brain (edited byJung, R.), pp. 268–324, Berlin: Springer-Verlag.

    Google Scholar 

  • S Zentágothai, J. &Arbib, M. A. (1974) Conceptual models of neural organization.Neurosciences Research Progress Bulletin 12, 307–510.

    Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T. &Tokashiki, S. (1974) An intracellular study of neuronal organization in the visual cortex.Brain Research 14, 518–20.

    Google Scholar 

  • Ulmar, G. (1976) Some biochemical changes in the isolated cortex of the rat.Experimental Brain Research Suppl.1, 337–42.

    Google Scholar 

  • Valverde, F. (1971) Short axon neuronal subsystems in the visual cortex of the monkey.International Journal of Neuroscience 1, 181–97.

    Google Scholar 

  • Watanabe, S., Konishi, M. &Creutzfeldt, O. D. (1966) Post-synaptic potentials in the cat's visual cortex following electrical stimulation of afferent pathways.Experimental Brain Research 1, 272–83.

    Google Scholar 

  • White, E. L. &Rock, M. P. (1980) Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections.Journal of Neurocytology 9, 615–36.

    Google Scholar 

  • Whitsel, B. L., Roppolo, J. R. &Werner, G. (1972) Cortical information processing of stimulus motion on primate skin.Journal of Neurophysiology 35, 691–717.

    Google Scholar 

  • Wu, J. -Y., Matsuda, T. &Roberts, E. (1973) Purification and characterization of glutamate decarboxylase from mouse brain.Journal of Biological Chemistry 248, 3029–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendry, S.H.C., Houser, C.R., Jones, E.G. et al. Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol 12, 639–660 (1983). https://doi.org/10.1007/BF01181528

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181528

Keywords

Navigation