Skip to main content
Log in

The emergence of the cortical GABAergic neuron: with particular reference to some peptidergic subpopulations

  • Published:
Journal of Neurocytology

Summary

The technical developments which have led to our present ability to make predictions about neurochemical identity from morphological observations are retraced with particular reference to the GABAergic neuron and its many subdivisions. The synaptology of four peptidergic sub-populations in the cerebral cortex is examined and described in detail. It is concluded that the recognition of Gray Type 1 and Type 2 synapse types continues to provide a key element in our analysis and understanding of the connectivity of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, C. &Pickel, V. M. (1989) Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: Ultrastructural basis for interactions with GABAergic and non-GABAergic neurons.Journal of Neuroscience 9, 4333–54.

    PubMed  Google Scholar 

  • Baimbridge, K. G., Celio, M. R. &Rogers, J. H. (1992) Calcium-binding proteins in the nervous system.Trends in Neurosciences 15, 303–8.

    PubMed  Google Scholar 

  • Beaulieu, C. &Somogyi, P. (1990) Targets and quantitative distribution of GABAergic synapses in the visual cortex of the cat.European Journal of Neuroscience 2, 296–303.

    PubMed  Google Scholar 

  • Bloom, F. E. &Iversen, L. L. (1971) Localizing3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography.Nature 229, 628–30.

    PubMed  Google Scholar 

  • Chronwall, B. M., Chase, T. N. &O'Donohue, T. L. (1984) Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons.Neuroscience Letters 52, 213–17.

    PubMed  Google Scholar 

  • Connor, J. R. &Peters, A. (1984) Vasoactive intestinal polypeptide-immunoreactive neurons in rat visual cortex.Neuroscience 12, 1027–44.

    PubMed  Google Scholar 

  • Csillik, B. &Knyihar, E. (1970) Distribution of14C-thiosemicarbazide in the rat brain: an attempt to localize sites of γ-aminobutyric acid production.Nature 225, 562–3.

    PubMed  Google Scholar 

  • Defelipe, J., Hendry, S. H. C. &Jones, E. G. (1986) A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory-motor cortex.Neuroscience 17, 991–1009.

    PubMed  Google Scholar 

  • Defelipe, J. &Jones, E. G. (1988)Cajal on the Cerebral Cortex. Oxford: Oxford University Press.

    Google Scholar 

  • De Lima, A. D. &Morrison, J. H. (1989) Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey.Journal of Comparative Neurology 283, 212–27.

    PubMed  Google Scholar 

  • Demeulemeester, H., Arckens, L., Vandesande, F., Orban, G. A., Heizmann, C. W. &Pochet, R. (1991) Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex.Experimental Brain Research 84, 538–44.

    Google Scholar 

  • Eadie, L. A., Parnavelas, J. G. &Franke, E. (1987) Development of the ultrastructural features of somatostatin-immunoreactive neurons in the rat visual cortex.Journal of Neurocytology 16, 445–59.

    PubMed  Google Scholar 

  • Eccles, J. C. (1964)The Physiology of Synapses. Springer, Berlin.

    Google Scholar 

  • Ehinger, B. (1970) Autoradiographic identification of rabbit retinal neurons that take up GABA.Experientia 26, 1063.

    PubMed  Google Scholar 

  • Feldman, M. L. &Peters, A. (1978) The forms of nonpyramidal neurons in the visual cortex of the rat.Journal of Comparative Neurology 179, 761–94.

    PubMed  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Smith, A. D. &Somogyi, P. (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex.Journal of Comparative Neurology 221, 263–78.

    PubMed  Google Scholar 

  • Gilbert, C. D. &Wiesel, T. N. (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex.Nature 280, 120–5.

    PubMed  Google Scholar 

  • Gray, E. G. (1959) Axosomatic and axodendritic synapses of the cerebral cortex: an electron microscope study.Journal of Anatomy 93, 420–33.

    PubMed  Google Scholar 

  • Gray, E. G. &Whittaker, V. P. (1962) The isolation of nerve endings from brain: an electron microscope study of cell fragments derived by homogenization and centrifugation.Journal of Anatomy 96, 79–87.

    PubMed  Google Scholar 

  • Hendry, S. H. C., Jones, E. G. &Emson, P. C. (1984) Morphology, distribution and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex.Journal of Neuroscience 4, 2497–517.

    PubMed  Google Scholar 

  • Hodgson, A. J., Penke, B., Erdei, A., Chubb, I. W. &Somogyi, P. (1985) Antisera to γ-aminobutyric acid. I. Production and characterization using a model system.Journal of Histochemistry and Cytochemistry 33, 229–39.

    PubMed  Google Scholar 

  • Hökfelt, T. &Ljungdahl, Å (1970) Cellular localization of labelled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study,Brain Research 22, 391–6.

    PubMed  Google Scholar 

  • Hökfelt, T. &Ljungdahl, Å (1972) Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labelled gamma-aminobutyric acid (3H-GABA).Experimental Brain Research 14, 354–62.

    Google Scholar 

  • Iversen, L. L. &Neal, M. J. (1968) The uptake of [3H]GABA by slices of rat cerebral cortex.Journal of Neurochemistry 15, 1141–9.

    PubMed  Google Scholar 

  • Jones, E. G. &Hendry, S. H. C. (1986) Co-localization of GABA and neuropeptides in neocortical neurons.Trends in Neurosciences 9, 71–6.

    Google Scholar 

  • Kosaka, T., Kosaka, K., Tateishi, K., Hamaoka, Y., Yanaihara, N., Wu, J.-Y. &Hama, K. (1985) GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus.Journal of Comparative Neurology 239, 420–30.

    PubMed  Google Scholar 

  • Krnjevic, K. (1970) Glutamate and γ-aminobutyric acid in brain.Nature 228, 119–24.

    PubMed  Google Scholar 

  • Mcdonald, J. K., Parnavelas, J. G., Karamanlidis, A. N., Brecha, N. &Koenig, J. I. (1982a) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. I. Somatostatin.Journal of Neurocytology 11, 809–24.

    PubMed  Google Scholar 

  • Mcdonald, J. K., Parnavelas, J. G., Karamanlidis, A. N. &Brecha, N. (1982b) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. II. Vasoactive intestinal polypeptide.Journal of Neurocytology 11, 825–37.

    PubMed  Google Scholar 

  • Mcdonald, J. K., Parnavelas, J. G., Karamanlidis, A. N., Rosenquist, G. &Brecha, N. (1982c) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. III. Cholecystokinin.Journal of Neurocytology 11, 881–95.

    PubMed  Google Scholar 

  • Mcdonald, J. K., Parnavelas, J. G., Karamanlidis, A. N. &Brecha, N. (1982d) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. IV. Avian pancreatic polypeptide.Journal of Neurocytology 11, 985–95.

    PubMed  Google Scholar 

  • Meinecke, D. L. &Peters, A. (1986) Somatostatin immunoreactive neurons in rat visual cortex: a light and electron microscopic study.Journal of Neurocytology 15, 121–36.

    PubMed  Google Scholar 

  • Mitchell, J. F. &Srinivasan, V. (1969) Release of3H-Aminobutyric acid from the brain during synaptic inhibition.Nature 224, 663–6.

    Google Scholar 

  • Otsuka, M., Iversen, L. L., Hall, Z. W. &Kravitz, E. A. (1966) Release of gamma-aminobutyric acid from inhibitory nerves of lobster.Proceedings of the National Academy of Sciences (USA) 56, 1110–15.

    Google Scholar 

  • Ottersen, O. P. &Storm-Mathisen, J. (1984) Glutamateand GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique.Journal of Comparative Neurology 229, 374–92.

    PubMed  Google Scholar 

  • Papadopoulos, G. C., Parnavelas, J. G. &Cavanagh, M. E. (1987) Extensive coexistence of neuropeptides in the rat visual cortex.Brain Research 420, 95–9.

    PubMed  Google Scholar 

  • Parnavelas, J. G. (1986) Morphology and distribution of peptide-containing neurones in the cerebral cortex.Progress in Brain Research 66, 119–34.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Dinopoulos, A. &Davies, S. W. (1989) The central visual pathways. InHandbook of Chemical Neuroanatomy Vol. 7:Integrated Systems of the CNS, Part II (edited byBjörklund, A., Hökfelt, T. &Swanson, L. W.) pp. 1–164, Amsterdam: Elsevier.

    Google Scholar 

  • Peters, A., Miller, M. &Kimerer, L. M. (1983) Cholecystokinin-like immunoreactive neurons in rat cerebral cortex.Neuroscience 8, 431–48.

    PubMed  Google Scholar 

  • Sabatini, D. D., Bensch, K. &Barnett, R. J. (1963) Cytochemistry and electron microscopy: the preservation of ultrastructure and enzymatic activity by aldehyde fixation.Journal of Cell Biology 17, 19–58.

    PubMed  Google Scholar 

  • Ribak, C. E. (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.Journal of Neurocytology 7, 461–78.

    PubMed  Google Scholar 

  • Seguela, P., Gamrani, H., Geffard, M., Calas, A. &Le Moal, M. (1985) Ultrastructural immunocytochemistry of γ-aminobutyrate in the cerebral and cerebellar cortex of the rat.Neuroscience 16, 865–74.

    PubMed  Google Scholar 

  • Somogyi, P., Freund, T. F. &Kisvarday, Z. F. (1984) Different types of3H-GABA accumulating neurons in the visual cortex of the rat. Characterization of combined autoradiography and Golgi impregnation.Experimental Brain Research 54, 45–56.

    Google Scholar 

  • Somogyi, P. &Soltész, I. (1986) Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat's visual cortex.Neuroscience 19, 1051–6.

    PubMed  Google Scholar 

  • Sternberger, L. A., Hardy, P. H., Curculis, J. J. &Meyer, H. G. (1970) The unlabelled antibody-enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes.Journal of Histochemistry and Cytochemistry 18, 315–33.

    PubMed  Google Scholar 

  • Uchizono, K. (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat.Nature 207, 642–3.

    PubMed  Google Scholar 

  • Vincent, S. R., Johansson, O., Hökfelt, T., Meyerson, B., Sachs, C., Elde, R. P., Terenius, L. &Kimmel, J. (1982) Neuropeptide coexistence in human cortical neurones.Nature 298, 65–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennison-Cavanagh, M.E., Papadopoulos, G. & Parnavelas, J.G. The emergence of the cortical GABAergic neuron: with particular reference to some peptidergic subpopulations. J Neurocytol 22, 805–814 (1993). https://doi.org/10.1007/BF01181325

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181325

Keywords

Navigation