Skip to main content
Log in

Fully developed flow of granular materials down a heated inclined plane

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The mechanics of flowing granular materials such as coal, sand, metal ores, etc., and their flow characteristics have received considerable attention in recent years as it has relevance to several important technological problems. In a number of instances, these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials, taking into account the heat transfer mechanism by conduction, are derived using a continuum model (cf. Goodman and Cowin [1], [2], Rajagopal and Massoudi [3]). For a fully developed flow of these materials down an inclined plane, the equations reduce to a system of coupled non-linear ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented for cases where the viscosity and thermal conductivity are assumed to be functions of the volume fraction. It is shown that the equations admit multiple solutions for certain values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Symmetric part of the velocity gradient

K :

thermal conductivity

L :

velocity gradient

T :

Cauchy stress tensor

b :

body force

h :

characteristic height

q :

heat flux

r :

radiating heat

u :

velocity vector

α:

angle of inclination of the inclined plane with the horizontal

ɛ:

specific internal energy

γ:

distributed mass density

Θ:

temperature

ν:

volume fraction

ϱ:

bulk mass density

References

  1. Goodman, M. A., Cowin, S. C.: Two problems in the gravity flow of granular materials. J. Fluid Mech.45, 321–339 (1971).

    Google Scholar 

  2. Goodman, M. A., Cowin, S. C.: A continuum theory for granular materials. Arch. Rat. Mech. Anal.44, 249–266 (1972).

    Google Scholar 

  3. Rajagopal, K. R., Massoudi, M.: A method for measuring material moduli of granular materials: flow in an orthogonal rheometer. Topical Report U.S. Department of Energy DOE/PETC/TR-90/3 (1990).

  4. Patton, J. S., Sabersky, R. H., Brennen, C. E.: Convective heat transfer to rapidly flowing, granular materials. Int. J. Heat Mass Transfer29, 1263–1269 (1986).

    Google Scholar 

  5. Uhl, V. W., Root, W. L.: Heat transfer to granular solids in agitated units. Chem. Eng. Prog.63, 81–92 (1967).

    Google Scholar 

  6. Sullivan, W. N., Sabersky, R. H.: Heat transfer to flowing granular media. Int. J. Heat Mass Transfer18, 97–107 (1975).

    Google Scholar 

  7. Spelt, J. K., Brennen, C. E., Sabersky, R. H.: Heat transfer to flowing granular material. Int. J. Heat Mass Transfer25, 791–796 (1982).

    Google Scholar 

  8. Reynolds, O.: Experiment showing dilatancy a property of granular material, possibly connected with gravitation. Proc. Roy. Inst. Gr. Britain11, 354–363 (1886).

    Google Scholar 

  9. Reiner, M.: A mathematical theory of dilatancy. Am. J. Math.67, 350–362 (1945).

    Google Scholar 

  10. Cowin, S. C.: A theory for the flow of granular material. Power Tech.9, 61–69 (1974).

    Google Scholar 

  11. Cowin, S. C.: Constitutive relations that imply a generalized Mohr-Coulomb criterion. Acta Mech.20, 41–46 (1974).

    Google Scholar 

  12. Savage, S. B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech.92, 53–96 (1979).

    Google Scholar 

  13. Ahmadi, G.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech.17, 21–33 (1982).

    Google Scholar 

  14. McTigue, D. F.: A non-linear constitutive model for granular materials: applications to gravity flow. J. Appl. Mech.49, 291–296 (1982).

    Google Scholar 

  15. Nunziato, J. W., Passman, S. L., Thomas Jr., J. P.: Gravitational flows of granular materials with incompressible grains. J. Rheol.24, 395–420 (1980).

    Google Scholar 

  16. Passman, S. L., Nunziato, J. W., Bailey, P. B., Thomas Jr., J. P.: Shearing flows of granular materials. J. Eng. Mech. Div. ASCE106, 773–783 (1980).

    Google Scholar 

  17. Boyle, E. J., Massoudi, M.: Kinetic theories of granular materials with applications to fluidized beds. Technical Note, U.S. Department of Energy DOE/METC-89/4088 (1988).

  18. Boyle, E. J., Massoudi, M.: A theory for granular materials exhibiting normal stress effects based on Enskog's dense gas theory. Int. J. Eng. Sci.28, 1261–1275 (1990).

    Google Scholar 

  19. Hutter, K., Szidarovszky, F., Yakowitz, S.: Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches. Part I. Theory. Acta Mech.63, 87–112 (1986).

    Google Scholar 

  20. Hutter, K., Szidarovszky, F., Yakowitz, S.: Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches. Part II. Numerical results. Acta Mech.65, 239–261 (1986).

    Google Scholar 

  21. Johnson, P. C., Jackson, R.: Frictional-collisional constitutive relations for granular materials with application to plane shear. J. Fluid Mech.176, 67–93 (1987).

    Google Scholar 

  22. Rajagopal, K. R., Troy, W. C., Massoudi, M.: Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech. B/Fluids11, 265–276 (1992).

    Google Scholar 

  23. Johnson, G., Massoudi, M., Rajagopal, K. R.: Flow of a fluid-solid mixture between flat plates. Chem. Eng. Sci.46, 1713–1723 (1991).

    Google Scholar 

  24. Johnson, G., Massoudi, M., Rajagopal, K. R.: Flow of a fluid infused with solid particles through a pipe. Int. J. Eng. Sci.29, 649–661 (1991).

    Google Scholar 

  25. Walton, O. R., Braun, R. L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech.63, 73–86 (1986).

    Google Scholar 

  26. Schlünder, E. U.: Heat transfer to moving spherical packing at short contact times. Int. Chem. Eng.20, 550–554 (1980).

    Google Scholar 

  27. Wunschmann, J., Schlünder, E. U.: Heat transfer from heated surfaces to spherical packings. Int. Chem. Eng.20, 555–563 (1980).

    Google Scholar 

  28. Schlünder, E. U.: Particle heat transfer. In: Proc. Seventh Int. Heat Trans. Conf. Munich, vol. 1 (Grigull, U., Hahne, E., Stephan, K., Straub, J., eds.), pp. 195–211. New York: Hemisphere Pub. 1982.

    Google Scholar 

  29. Buggisch, B., Löffelmann, G.: Theoretical and experimental investigations into local granulate mixing mechanisms. Chem. Eng. Process.26, 193–200 (1989).

    Google Scholar 

  30. Bashir, Y. M., Goddard, J. D.: Experiments on the conductivity of suspensions of ionically-conductive spheres. AIChE J.36, 387–396 (1990).

    Google Scholar 

  31. Batchelor, G. K., O'Brien, R. W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. London Ser.A355, 313–333 (1977).

    Google Scholar 

  32. Hui, K., Haff, P. K., Unger, J. E., Jackson, R.: Boundary conditions for high-shear grain flows. J. Fluid Mech.145, 223–233 (1984).

    Google Scholar 

  33. Johnson, P. C., Nott, P., Jackson, R.: Frictional-collisional equations of motion of particular flows and their application to chutes. J. Fluid Mech.210, 501–535 (1990).

    Google Scholar 

  34. Ascher, U., Christianson, J., Russel, R. D.: Collocation software for boundary value ODE's. ACM Trans. Math. Software7, 209–222 (1981).

    Google Scholar 

  35. Ahn, H.: Experimental and analytical investigation of granular materials. Ph.D. Thesis, Caltech. 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudhe, R., Rajagopal, K.R. & Massoudi, M. Fully developed flow of granular materials down a heated inclined plane. Acta Mechanica 103, 63–78 (1994). https://doi.org/10.1007/BF01180218

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01180218

Keywords

Navigation