Skip to main content
Log in

On the continuum modeling of materials with kinematic structure

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this work, a phenomenological field-based approach to the formulation of models for structured materials or continua is presented. The corresponding results are in particular relevant to that class of such materials for which thedistribution of (micro)structure at each material point and the evolution of this distribution may influence the behavior of the material as a whole (e.g., in nematic liquid crystals with variable orientation). Essential to the underlying approach is the assumption or idealization that the structured continuum in question is characterized kinematically by additional degrees of freedom in comparison to standard continua. On this basis, the kinematics and balance relations for the structure continuum are formulated with respect to a (generalized) kinematic space via direct generalization of standard kinematics and balance relations. In particular, the formation of the latter for the structured continuum is based on the corresponding (total) energy balance. Indeed, analogous to the standard case, the assumed Euclidean frame-indifference of this balance, together with the transformation properties of the fields appearing in it, determine the forms of the remaining balance relations for the structured continuum. With these general results in hand, account is next taken of the fact that the degrees of freedom of the standard continuum constitute a subset of those of the structured continuum. As already established in previous work, this fact can be represented in a mathematically-precise fashion as a fibre bundle, with base space the standard kinematic space, i.e., three-dimensional Euclidean point space, and total space the kinematic space for the structured continuum. In this context, the kinematic space for the structure itself is represented by the typical fibre of the fibre bundle. Among other results, one obtains on this basis a split of the momentum balance for the structured continuum into momentum balances for the standard continuum and for the structure. Further, the fibre bundle representation induces naturally forms of all fields and balance relations with respect to standard kinematic space, i.e., forms averaged over the degrees of freedom of the structure. In the last part of the work, the results of the current approach are applied to the special cases of rigid-rod- and rigid-body-like structure, and compared with previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosserat, E., Cosserat, F.: Théorie des corps deformable. Paris: Hermann 1906.

    Google Scholar 

  2. Toupin, R. A.: Theories of elasticity with couple stress. Arch. Rat. Mech. Anal.17, 85–112 (1964).

    Google Scholar 

  3. Ehringen, A. C.: Mechanics of micromorphic continua. In: Mechanics of generalized continua (Kröner, E., ed.). Springer 1967.

  4. Goodman, D. C., Cowin, S.: A theory of granular materials. Arch. Rat. Mech. Anal.44, 249–266 (1972).

    Google Scholar 

  5. Capriz, G.: Continua with microstructure. Springer tracts in natural philosophy 37, 1989.

  6. Segev, R.: A geometric framework for the statics of materials with microstructure. Math. Mods. Meths. Appl. Sci.4, 871–897 (1994).

    Google Scholar 

  7. Fried, E.: Continua described by a microstructural field. Z. Angew. Math. Phys.47, 168–175 (1996).

    Google Scholar 

  8. Jenkins, J. T., Savage, S. C.: A theory for rapid flows of identical, smooth, nearly elastic particles, J. Fluid Mech.130, 227–246 (1983).

    Google Scholar 

  9. Giesekus, H.: Kinetic model for the steady shear flow of dilute suspensions of rigid dumb-bells. Rheol. Acta2, 50–62 (1962).

    Google Scholar 

  10. Bird, R. B., Hassager, O., Armstrong, R. C., Curtiss, C. F.: Dynamic of polymeric liquids, vol. 2; Kinetic theory, New York: Wiley 1977.

    Google Scholar 

  11. Bird, R. B., Curtiss, C. F.: Kinetic theory and rheology of solutions of rigid rodlike molecules. J. Non-Newtonian Fluid Mech.14, 85–101 (1984).

    Google Scholar 

  12. Doi, M., Edwards, S. F.: A model for macromolecular liquids at high concentration. J. Chem. Soc. Faraday Trans. II74, 560–570 and 918–932 (1978).

    Google Scholar 

  13. Doi, M.: A model for macromolecular liquids at high concentration. J. Polym. Sci. Polym. Phys. Edn.19, 229–243 (1981).

    Google Scholar 

  14. Clement, A.: Prediction of deformation texture using a physical principle of conservation. Mater. Sci. Engrg.55, 203–210 (1982).

    Google Scholar 

  15. Wilmanski, K.: Macroscopic theory of evolution of deformation textures. Int. J. Plasticity8, 959–975 (1991).

    Google Scholar 

  16. Adams, B. L., Boehler, J. P., Guidi, M., Onat, T.: Group theory and representation of microstructure and mechanical behaviour of polycrystals. J. Mech. Phys. Solids40, 723–737 (1992).

    Google Scholar 

  17. Prandtl, V. C., Jenkins, J. T., Dawson, P. R.: An analysis of texture and plastic spin for planar polycrystals. J. Mech. Phys. Solids41, 1357–1382 (1993).

    Google Scholar 

  18. Kumar, A., Dawson, P.: The simulation of texture evolution with finite elements over orientation space, I. Development. Comp. Meth. Appl. Mech. Engng.130, 227–246 (1996).

    Google Scholar 

  19. Kumar, A., Dawson, P.: The simulation of texture evolution with finite elements over orientation space, II. Application to planar crystals. Comp. Mech. Appl. Mech. Engng.130, 247–261 (1996).

    Google Scholar 

  20. Man, C. S.: On the constitutive equations of some weakly-textured materials. Arch. Rat. Mech. Anal.143, 77–103 (1998).

    Google Scholar 

  21. Paroni, R., Man, C. S.: Constitutive equations of elastic polycrystalline materials. Arch. Rat. Mech. Anal.150, 153–177 (1999).

    Google Scholar 

  22. Blenk, S., Muschik, W.: Orientation balances for nematic liquid crystals. J. Non-Equilib. Thermodyn.16, 67–87 (1991).

    Google Scholar 

  23. Ericksen, J. L.: Liquid crystals with variable degree of orientation. Arch. Rat. Mech. Anal.113, 97–120 (1991).

    Google Scholar 

  24. Ehrentraut, H., Muschik, W.: Balance laws and constitutive equations of microscopic rigid bodies: A model for biaxial liquid crystals. Mol. Cryst. Liq. Cryst.262, 561–568 (1995).

    Google Scholar 

  25. Ehrentraut, H.: Orientation balances for nematic liquid crystals. Ph. D. Diss., Technical University of Berlin, 1996.

  26. Svendson, B.: A fibre bundle model for structured continua. ZAMM76, S209-S210 (1996).

    Google Scholar 

  27. Binz, E., De León, M., Socolescu, D.: Global dynamics of media with microstructure. 2nd Int. Seminar on Geometry, Continua and Microstructure, Madrid, Spain, 1998.

  28. Capriz, G., Virga, E.: On singular surfaces in the dynamics of continua with microstructure. Quart. Appl. Math.52, 509–517 (1994).

    Google Scholar 

  29. Svendsen, B.: On the formulation of balance relations and configurational fields for materials with microstructure via invariance. Int. J. Solids Structs.38, 1183–1200 (2000).

    Google Scholar 

  30. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in consitutive theory. Acta Mech.137, 197–209 (1999).

    Google Scholar 

  31. Truesdell, C., Toupin, R.: The classical field theories of mechanics. In: Handbuch der Physik, V. III/1, Springer 1999.

  32. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics, 2nd ed. Springer 1992.

  33. Green, A. M., Rivlin, R. S.: On Cauchy's equations of motion ZAMP15, 290–292 (1964).

    Google Scholar 

  34. Marsden, J. E., Hughes, T. J. R.: Mathematical foundations of elasticity. Prentice-Hall 1983.

  35. Šilhavý, M.: The mechanics and thermodynamics of continuous media. Springer 1997.

  36. Capriz, G., Polio-Guidugli, P., Williams W.: On balance equations for materials with affine structure. Meccanica17, 80–84 (1982).

    Google Scholar 

  37. Pitteri, M.: On a statistical-kinetic model for generalized continua. Arch. Rat. Mech. Anal.111, 99–120 (1990).

    Google Scholar 

  38. Gurtin, M. E.: The nature of configurational forces. Arch. Rat. Mech. Anal.131, 67–100 (1995).

    Google Scholar 

  39. Gianquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations I: Cartesian currents. Springer 1998.

  40. Gianquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations II: Variational integrals. Springer 1998.

  41. Di Carlo, A.: A non-standard continuum mechanics. J. Elast.19, 229–243 (1997).

    Google Scholar 

  42. Truesdell, C.: Rational thermodynamics. Springer 1984.

  43. Svendsen, B.: On the constituent structure of a classical mixture. Meccanica32, 13–32 (1997).

    Google Scholar 

  44. Abraham, R., Marsden, J. E., Ratiu, T.: Manifolds, tensor analysis, and applications (Applied mathematical Sciences, vol. 75). Springer 1988.

  45. Straley, J. P.: Ordered phases of a liquid of biaxial particles. Phys. Rev. A10, 1881–1887 (1974).

    Google Scholar 

  46. Hess, S.: Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals i. Z. Naturforsch.30a, 728–733 (1975).

    Google Scholar 

  47. Hess, S.: Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals ii. Z. Naturforsch.30a, 1224–1232 (1975).

    Google Scholar 

  48. Hess, S.: Folker-Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch.31a, 1034–1037 (1976).

    Google Scholar 

  49. Frank, F. C.: Orientation mapping. In: 8th Int. Conference on Textures of Materials (Kallend, J. S., Gottstein, G., eds.). The Metallurgical Society 1988.

  50. Becker, S., Panchanadeeswaran, S.: Crystal rotations represented as Rodrigues vectors. Text. Microstruct.10, 167–194 (1989).

    Google Scholar 

  51. Morawiec, A.: The rotation rate field and geometry of orientation space. J. Appl. Cryst.23, 374–377 (1990).

    Google Scholar 

  52. Altmann, S. L.: Rotations, quarternions and double groups. Oxford University Press 1987.

  53. Marsden, J. E., Ratiu, T. S.: Introduction to mechanics and symmetry. Springer 1994.

  54. Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., Murray, R. M.: Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. Anal136, 21–39 (1996).

    Google Scholar 

  55. Ericksen, J. L.: Conservation laws for liquid crystals. Trans. Soc. Rheol.5, 23–34 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svendsen, B. On the continuum modeling of materials with kinematic structure. Acta Mechanica 152, 49–79 (2001). https://doi.org/10.1007/BF01176945

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176945

Keywords

Navigation