Skip to main content
Log in

Effect of thermophoresis on submicron particle deposition from a forced laminar boundary layer flow onto an isothermal moving plate

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Similarity solutions for the problem of a continuously moving surface in a stationary incompressible fluid, including the combined effects of convection, diffusion, wall velocity and thermophoresis are derived for the case in which both the surface temperature and stretching velocity vary as a power law. Calculations for an isothermal moving plate clearly show the importance of thermophoresis on particle deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Arbitrary constants

B :

Arbitrary constants

C :

Non-dimensional particle concentration

D :

Brownian diffusion coefficient\(\left( { = \frac{{K_B T}}{{3\pi \mu d_p }}} \right)\)

d p :

Particle diameter

f :

Non-dimensional stream function

Gr:

Grashof number

g :

Gravitational acceleration

H :

Non-dimensional temperature

I :

Parameter of thermophoretic effect\(\left( { = \frac{{T_\infty }}{{T_w - T_\infty }}} \right)\)

k :

Thermophoretic coefficient

K B :

Boltzmann constant (1.38×10−23 J/K)

L :

Characteristic length

n :

Arbitrary constants

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

r p :

Particle radius

Sc:

Schmidt number

Sh:

Sherwood number

T :

Absolute temperature

u :

Non-dimensional velocity inx-direction

v:

Non-dimensional velocity iny-direction

vt:

Thermophoretic velocity

V d :

Deposition velocity of particle

V d o :

Diffusional deposition velocity of particle

V d th :

Deposition velocity of particle with the effect of thermophoresis

x, y :

Cartesian co-ordinates

ψ:

Stream function

η:

Similarity variable

τ:

Fluid shear stress or relaxation time of particle

μ:

Viscosity of fluid

v :

Kinematic viscosity

λ:

Mean free path of gas molecules

β:

Volumetric coefficient of thermal expansion (=1/T for an ideal gas)

o :

Reference conditions

w :

Wall conditions

∞:

Conditions far from the surface

′:

Dimensional values

References

  1. Sakaidis, B. C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. A. I. Ch. E. J.7, 26–28 (1961).

    Google Scholar 

  2. Sakaidis, B. C.: Boundary-layer behavior on continuous solid surfaces: II. The boundary-layer on a continuous flat surface. A. I. Ch. E. J.7, 221–225 (1961).

    Google Scholar 

  3. Sakaidis, B. C.: Boundary-layer behavior on continuous solid surfaces: III. The boundary-layer on a continuous cylindrical surface. A. I. Ch. J.7, 467–472 (1961).

    Google Scholar 

  4. Tsou, F. K., Sparrow, E. M., Goldstein, R. J.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transfer10, 219–235 (1967).

    Google Scholar 

  5. Cleaver, J. W.: The laminar boundary layer developed in a moving elastic plane surface. Internal Report, Mech. Eng. Dept., University of Liverpool, UK (1970).

    Google Scholar 

  6. Lee, W. W., Davis, R. T.: Laminar boundary layer on moving continuous surface. Chem. Eng. Sci.27, 2129–2149 (1972).

    Google Scholar 

  7. Kuiken, H. K.: The cooling of a low-heat-resistance sheet moving through a fluid. Proc. R. Soc. London Ser. A341, 233–252 (1974).

    Google Scholar 

  8. Kuiken, H. K.: The cooling of a low-heat-resistance cylinder moving through a fluid. Proc. R. Soc. London Ser. A346, 23–35 (1975).

    Google Scholar 

  9. Vleggaar, J.: Laminar boundary-layer behavior on continuous accelerating surfaces. Chem. Eng. Sci.32, 1517–1525 (1977).

    Google Scholar 

  10. Grubka, L. J., Bobba, K. M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. Trans. ASME J. Heat Transfer107, 248–250 (1985).

    Google Scholar 

  11. Jeng, D. R., Chang, T. C. A., De Witt, K. J.: Momentum and heat transfer on a continuous moving surface. Trans ASME J. Heat Transfer108, 532–539 (1986).

    Google Scholar 

  12. Chen, C. K., Mar, M. I.: Heat transfer of a continuously stretching sheet with suction and blowing. J. Math. Anal. Appl.135, 568–580 (1988).

    Google Scholar 

  13. Char, M. I., Chen, C. K., Cleaver, J. W.: Conjungate forced convection heat transfer from a continuously moving flat sheet. Int. J. Heat Fluid Flow11, 257–261 (1990).

    Google Scholar 

  14. Karwe, M. V., Jaluria, Y.: Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing. Trans ASME J. Heat Transfer113, 612–619 (1991).

    Google Scholar 

  15. Yang, K. T.: Possible similar solution for laminar free convection on vertical plates and cylinders. J. Appl. Mech.82, 230–236 (1960).

    Google Scholar 

  16. Talbot, L., Cheng, R. K., Schefer, R. W., Willis, D. R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech.101, 737–758 (1980).

    Google Scholar 

  17. Batchelor, G. K., Shen, C.: Thermophoretic deposition of particles in gas flowing over cold surfaces. J. Colloid Interface Sci.107, 21–37 (1985).

    Google Scholar 

  18. Chang, J. S., Ishii, T., Matsumura, S., Ono, S., Teii, S.: Theory of aerosol particle thermal deposition on flat body in a variable property fluid. J. Aerosol Sci.18, 619–621 (1987).

    Google Scholar 

  19. Sankara, K. K., Watson, L. T.: Micropolar flow past a stretching sheet. J. Appl. Math. Phys. (ZAMP)36, 845–853 (1985).

    Google Scholar 

  20. Zernik, W.: The dust-free space surrounding hot bodies. Br. J. Appl. Phys.8, 117–120 (1957).

    Google Scholar 

  21. Singh, B., Byers, R. L.: Particle deposition due to thermal force in the transition and near-continuum regimes. Ind. Eng. Chem. Fund.11, 127–133 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, M.C. Effect of thermophoresis on submicron particle deposition from a forced laminar boundary layer flow onto an isothermal moving plate. Acta Mechanica 129, 219–229 (1998). https://doi.org/10.1007/BF01176747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176747

Keywords

Navigation