Skip to main content
Log in

Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A cubic spline collocation numerical method and a simple transposition theorem have been used to study the free convection in the flow of a micropolar fluid along irregular vertical surfaces. A sinusoidal surface is used to elucidate the amplitude wavelength ratio effects on the free convection in a micropolar boundary layer. The effects of micropolar parameterR and geometries on the velocity and temperature fields have been graphically studied. The skin friction stress on the wall has also been studied and discussed. It is observed that the frequency of the local heat transfer rate is twice that of the wavy surface, irrespective of whether the fluid is a Newtonian fluid or micropolar fluid; the same result is also obtained for the skin friction on the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\bar a\) :

amplitude

B :

dimensionless material parameter, Eq. (8)

C p :

specific heat of the fluid at constant pressure

C f :

skin-friction coefficient

g :

gravitational acceleration

Gr:

Grashof number

h :

heat transfer coefficient

j :

micro-inertia density

K f :

thermal conductivity

L :

wave length

N :

microrotation

Nu:

local Nusselt number defined in Eq. (20)

\(\overline {Nu} \) :

total Nusselt number defined in Eq. (21)

p :

pressure

Pr:

Prandtl number

R :

micropolar parameter, ϰ/μ

s :

distance measured along the surface from the leading edge

T :

temperature

u, v :

velocity components

x, y :

coordinates

α:

amplitude-wavelength ratio\((\bar a/L)\)

β:

thermal expansion coefficient

γ:

spin-gradient viscosity

η:

dimensionless parameter

σ:

surface geometry function

θ:

dimensionless temperature,(T−T )/(T w −T )

ϰ:

vortex viscosity

λ:

dimensionless material parameter

μ:

absolute viscosity

ν3 :

microrotation component

ξ:

dimensionless parameter

ϱ:

density of fluid

−:

dimensional quantity

∧:

nondimensional quantity

′:

derivative with respect tox

w :

surface conditions

∞:

conditions far away from the surface

References

  1. Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1–18 (1966).

    Google Scholar 

  2. Eringen, A. C.: Theory of thermomicrofluids. J. Math. Anal. Appl.38, 480–496 (1972).

    Google Scholar 

  3. Khonsari, M. M.: On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. Acta Mech.81, 235–244 (1990).

    Google Scholar 

  4. Khonsari, M. M., Brewe, D.: On the performance of finite journal bearings lubricated with micropolar fluids. STLE Tribology Trans.32, 155–160 (1989).

    Google Scholar 

  5. Hudimoto, B., Tokuoka, T.: Two-dimensional shear flows of linear micropolar fluids. Int. J. Eng. Sci.7, 515–522 (1969).

    Google Scholar 

  6. Lockwood, F., Benchaita, M., Friberg, S.: Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact. ASLE Tribology Trans.30, 539–548 (1987).

    Google Scholar 

  7. Lee, J. D., Eringen, A. C.: Boundary effects of orientation of nematic liquid crystals. J. Chem. Phys.55, 4509–4512 (1971).

    Google Scholar 

  8. Ariman, T., Turk, M. A., Sylvester, N. D.: On steady and pulsatile flow of blood. J. Appl. Mech.41, 1–7 (1974).

    Google Scholar 

  9. Kolpashchikov, V., Migun, N. P., Prokhorenko, P. P.: Experimental determinations of material micropolar coefficients. Int. J. Eng. Sci.21, 405–411 (1983).

    Google Scholar 

  10. Ariman, T., Turk, M. A., Sylvester, N. D.: Microcontinuum fluid mechanics — a review. Int. J. Eng. Sci.11, 905–930 (1973).

    Google Scholar 

  11. Ariman, T., Turk, M. A., Sylvester, N. D.: Applications of microcontinuum fluids mechanics. Int. J. Eng. Sci.12, 273–293 (1974).

    Google Scholar 

  12. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci.14, 639–646 (1976).

    Google Scholar 

  13. Jena, S. K., Mathur, M. N.: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate. Int. J. Eng. Sci.19, 1431–1439 (1981).

    Google Scholar 

  14. Jena, S. K., Mathur, M. N.: Free convection in the laminar boundary layer flow of a thermomicropolar fluid past a vertical flat plate with suction/injection. Acta Mech.42, 227–238 (1982).

    Google Scholar 

  15. Gorla, R. S. R., Pender, R., Eppich, J.: Heat transfer in micropolar boundary layer flow over a flat plate. Int. J. Eng. Sci.21, 791–798 (1983).

    Google Scholar 

  16. Agarwal, R. S., Dhanapal, C.: Flow and heat transfer in a micropolar fluid past a flat plate with suction and heat sources. Int. J. Eng. Sci.26, 1257–1266 (1988).

    Google Scholar 

  17. Gorla, R. S. R.: Combined forced and free convection in micropolar boundary layer flow on a vertical flat plate. Int. J. Eng. Sci.26, 385–391 (1988).

    Google Scholar 

  18. Yucel, A.: Mixed convection in micropolar fluid flow over a horizontal plate with surface mass transfer. Int. J. Eng. Sci.27, 1593–1602 (1989).

    Google Scholar 

  19. Balram, M., Sastry, V. U. K.: Micropolar free convection flow. Int. J. Heat Mass Transfer16, 437–441 (1973).

    Google Scholar 

  20. Sastry, V. U. K., Maiti, G.: Numerical solution of combined convection heat transfer of micropolar fluid in an annulus of two vertical pipes. Int. J. Heat Mass Transfer19, 207–211 (1976).

    Google Scholar 

  21. Mathur, M. N., Ojha, S. K., Ramachandran, P. S.: Thermal boundary layer of a micropolar fluid on a circular cylinder. Int. J. Heat Mass Transfer21, 923–933 (1978).

    Google Scholar 

  22. Lien, F. S., Chen, C. K., Cleaver, J. W.: Analysis of natural convection flow of micropolar fluid about a sphere with blowing and suction. ASME J. Heat Transfer108, 967–970 (1986).

    Google Scholar 

  23. Lien, F. S., Chen, T. M., Chen, C. K.: Analysis of a free-convection micropolar boundary layer about a horizontal permeable cylinder at a nonuniform thermal condition. ASME J. Heat Transfer112, 504–506 (1990).

    Google Scholar 

  24. Ramachandran, P. S., Mathur, M. N., Ojha, S. K.: Heat transfer in boundary layer flow of a micropolar fluid past a curved surface with suction and injection. Int. J. Eng. Sci.17, 625–639 (1979).

    Google Scholar 

  25. Wang, T. Y., Kleinstreuer, C.: Thermal convection on micropolar fluids past two-dimensional or axisymmetric bodies with suction/injection. Int. J. Eng. Sci.26, 1267–1277 (1988).

    Google Scholar 

  26. Prandtl, L.: Zur Berechnung der Grenzschichten. Z. Angew. Math. Mech.18, 77–82 (1938).

    Google Scholar 

  27. Rubin, S. G., Graves, R. A.: Viscous flow solution with a cubic spline approximation. Comp. Fluids3, 1–36 (1975).

    Google Scholar 

  28. Rubin, S. G., Khosla, P. K.: Higher order numerical solutions using cubic splines. AIAA J.14, 851–858 (1976).

    Google Scholar 

  29. Wang, P., Kahawita, R.: Numerical integration of partial differential equations using cubic splines. Int. J. Comp. Math.13, 271–286 (1983).

    Google Scholar 

  30. Wang, P., Kahawita, R.: A two-dimensional numerical model of estuarine circulation using cubic spline. Can. J. Civil Eng.10, 116–124 (1983).

    Google Scholar 

  31. Char, M. I., Chen, C. K.: Temperature field in non-Newtonian flow over a stretching plate with variable heat flux. Int. J. Heat Mass Transfer31, 917–921 (1988).

    Google Scholar 

  32. Anderson, D. A., Tannehill, J. C., Pletcher, R. H.: Computational fluid mechanics and heat transfer. New York: Hemisphere Publishing Corporation 1984.

    Google Scholar 

  33. Yao, L. S.: Natural convection along a vertical wavy surface. ASME J. Heat Transfer105, 465–468 (1983).

    Google Scholar 

  34. Yao, L. S.: A note on Prandtl's transposition theorem. ASME J. Heat Transfer110, 507–508 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, C.P., Chou, H.M. Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface. Acta Mechanica 101, 161–174 (1993). https://doi.org/10.1007/BF01175604

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175604

Keywords

Navigation