Skip to main content
Log in

On the kinematics of finite-deformation plasticity

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A theory of finite deformation plasticity is developed which involves a multiplicative decomposition of the deformation gradient through the assumption that there exists a stress-free configuration which can be used to separate the elastic and plastic components of the response. By using the polar decomposition on the usual indeterminate elastic and plastic deformation tensors, two uniquely defined stress-free configurations can be identified. The structure of this theory is compared with that of a spatial theory involving the polar decomposition of the total deformation gradient. It is shown that for the special case of linear response between the stress and the elastic strain, the two theories are indistinguishable in terms of their stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A. E., Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251–281 (1965).

    Google Scholar 

  2. Lee, E. H., Liu, D. T.: Finite-strain elastic-plastic theory particularly for plane wave analysis. J. Appl. Phys.38, 19–27 (1967).

    Google Scholar 

  3. Lee, E. H.: Elastic plastic deformation at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  4. Kratochvil, J.: Finite strain theory of inelastic behavior of crystalline solids. Foundations of plasticity (Sawczuk, A., ed.), pp. 401–415. Leyden: Noordhoff 1974.

    Google Scholar 

  5. Sidoroff, F.: On the formulation of plasticity and viscoplasticity with internal variables. Arch. Mech.27, 807–819 (1975).

    Google Scholar 

  6. Kleiber, M.: Kinematics of deformation processes in materials subjected to finite elastic-plastic strains. Int. J. Eng. Sci.13, 513–525 (1975).

    Google Scholar 

  7. Lubarda, V. A., Lee, E. H.: A correct definition of elastic and plastic deformation and its computational significance. J. Appl. Mech.48, 35–40 (1981).

    Google Scholar 

  8. Loret, B.: On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mechanics of Materials2, 287–304 (1983).

    Google Scholar 

  9. Green, A. E., Naghdi, P. M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci.9, 1219–1229 (1971).

    Google Scholar 

  10. Casey, J., Naghdi, P. M.: A remark in the use ofF=F e F p in plasticity. J. Appl. Mech.47, 672–675 (1980).

    Google Scholar 

  11. Johnson, G. C., Bammann, D. J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct.20, 725–737 (1984).

    Google Scholar 

  12. Besseling, J. F.: A thermodynamic approach to rheology. IUTAM Symposium on Irreversible aspects of continuum mechanics (Parkus, H., Sedov, L. I., eds.), pp. 16–53 New York: Springer 1966.

    Google Scholar 

  13. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct.9, 725–740 (1973).

    Google Scholar 

  14. Mandel, J.: Sur la definition de la vitesse de deformation elastique et sa relation avec la vitesse de constrainte. Int. J. Solids Struct.17, 873–878 (1981).

    Google Scholar 

  15. Nemat-Nasser, S.: On finite deformation elasto-plasticity. Int. J. Solids Struct.18, 857–872 (1982).

    Google Scholar 

  16. Dafalias, Y. F.: A missing link in the macroscopic constitutive formulation of large plastic deformations. Plasticity Today (Applied Science, U.D.) (Sawczuk, A., Bianchi, G., eds.), p. 135 (1984), International Symposium on Modern Trends and Results in Plasticity, Udine, Italy, June 1983.

  17. Rice, J. R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. Constitutive Equations in Plasticity (Argon, A. S., ed.), pp. 23–79. Cambridge, Mass.: MIT Press 1975.

    Google Scholar 

  18. Asaro, R. J.: Micromechanics of crystals and polycrystals. Advances in Applied Mechanics23, 1–115 (1983).

    Google Scholar 

  19. Sidoroff, F.: The geometrical concept of intermediate configuration and elasticplastic finite strain. Arch. Mech.25, 299–308 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bammann, D.J., Johnson, G.C. On the kinematics of finite-deformation plasticity. Acta Mechanica 70, 1–13 (1987). https://doi.org/10.1007/BF01174643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174643

Keywords

Navigation