Skip to main content
Log in

Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India

Petrologie, Geochemie und Genese der riftgebundenen Karbonatite von Ambadungar, Indien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Ambadungar (Amba Dongar) alkaline carbonatite complex is emplaced in the Deccan traps igneous province. A wide range of carbonatites and alkaline rocks are exposed around Ambadungar. The alkaline rocks have been classified as tinguaite, phonolite and/or phononephelinite, melanephelinite, and syenite and/or nepheline syenite whereas carbonatites vary from calcio-carbonatites to ferro- and silicocarbonatites. The enrichment in large-ion lithophile elements (LILE), P, and rare-earth elements (REE) in carbonatites is considered to result from fractionation of a mantle derived magmatic liquid, i.e. nephelinitic magma, by liquid immiscibility which also produced melanephelinite and/or phononephelinite with high field strength elements (HFSE) such as Ca, Mg, Fe, and Mn in the alkaline silicate liquid fraction. The La:Lu ratios of the carbonatites are typical of igneous rocks and vary between 590 and 1945, similar to many known magmatic carbonatites. The δ13C concentration varies between −2 and −8 ‰ whereas δ18O-values vary between 7.7 and 26.8‰. The δ13C concentration is typical of primary igneous carbonatites but δ18O enrichment is thought to be the result of post-magmatic processes such as interaction with meteoric water and re-equilibration with hydrous fluids at low temperatures.

Zusammenfassung

Der Ambadungar (Amba Dongar) Alkalikarbonatit-Komplex liegt in der magmatischen Deccan Provinz. Er umfaßt eine Vielzahl von karbonatitischen und alkalischen Gesteinen, die in der Umgebung von Ambadungar aufgeschlossen sind. Die Alkaligesteine sind als Tinguaite, Phonolite und/oder Phononephelinite, Melanephelinite, Syenite und/oder Nephelinsyenite zu klassifizieren, die Karbonatite als Calcio-, bis Ferro- and Silicokarbonatite. Die Anreicherung an LIL-Elementen und Seltenen Erden in den Karbonatiten werden als das Ergebnis der Fraktionierung von Mantelschmelzen, i.e. eines nephelinitisches Magmas, infolge von Nichtmischbarkeit interpretiert. Melanephelinite und/oder Phononephelinite and hohe Gehalte an HFS-Elementen (Ca, Mg, Fe and Mn) in der alkalisch-silikatischen Schmelzfraktion sind ebenfalls das Ergebnis dieser Prozesse. Die La/Lu-Verhältnisse sind typisch für magmatische Karbonatite and variieren zwischen 590 and 1945. Die δ13C Konzentrationen variieren zwischen -2 and -8 %o, die δ18O Werte zwischen 7.7 and 26.8 %0. Während die δ13C Konzentration typisch für primär magmatische Karbonatite ist, ist die δ18O-Anreicherung mit postmagmatischen Prozessen, wie etwa die Interaktion mit meteorischen Wässern and die Reequilibration mit niedrig temperierten wäßrigen Fluiden, erklärbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey DK (1989) Carbonate melt from the mantle in the volcanoes of south east Zambia. Nature 328: 414–418

    Google Scholar 

  • Cullers RL, Graf JL (1984) Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In:Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 237–274

    Google Scholar 

  • Deans T, Powell JL (1968) Trace elements and strontium isotopes in carbonatites, fluorites and limestones from India and Pakistan. Nature 218: 750–752

    Google Scholar 

  • Deans T, Sukheswala RN, Sethna SF, Viladkar SG (1973) Metasomatic feldspar rocks (potash fenites) associated with the fluorite deposits and carbonatites of Amba Dongar, Gujarat, India: discussion and contributions. Trans Inst Min Geol Metal 82: 33–40

    Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In:Bell K (ed) Carbonatites - genesis and evolution. Unwin Hyman, London, pp 301–359

    Google Scholar 

  • Deines P, Gold DP (1973) The isotopic composition of carbonatites and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 44: 943–961

    Google Scholar 

  • Donaldson CH, Dawson JB, Kanaris-Sotiriou R, Batchelor RA, Walsh JN (1987) The silicate lavas of Oldoinyo Lengai, Tanzania. N Jb Mineral 156: 247–279

    Google Scholar 

  • Duncan RA, Pyle DG (1988) Rapid eruption of the Deccan flood basalts at the Cretaceous/ Tertiary boundary. Nature 333: 841–843

    Google Scholar 

  • Eby GN (1975) Abundances and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec. Geochim Cosmochim Acta 39: 597–620

    Google Scholar 

  • Evensen NM, Hamilton PJ, O'Nions RK (1978) Rare earth abundances in chondrite meteorites. Geochim Cosmochim Acta 42: 1199–1212

    Google Scholar 

  • Freestone I, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites - an experimental study. Contrib Mineral Petrol 73: 105–117

    Google Scholar 

  • Garson MS (1984) Relationship of carbonatites to plate tectonics. Indian Mineralogists-Sukheswala volume, pp 163–188

  • Gittins J (1989) The origin and evolution of carbonatite magmas. In:Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 580–600

    Google Scholar 

  • Gwalani LG, Rock NMS, Chang W-J, Fernandez S, Allegre CJ, Prinzhofer A (1993) Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Igneous Province, Gujarat, India. l. Geology, petrography and petrochemistry. Mineral Petrol 47: 219–253

    Google Scholar 

  • Haggerty SE (1989) Mantle metasomes and the kinship between carbonatites and kimberlites. In:Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 546–560

    Google Scholar 

  • Hamilton DL, Kjarsgaard BA (1993) The immiscibility of silicate and carbonate liquids. S African J Geol 96(3): 139–142

    Google Scholar 

  • Karkare SG, Srivastava Rajesh K (1990) Regional dyke swarms related to the Deccan trap alkaline province, India. In:Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanism. Balkema, Rotterdam, pp 335–347

    Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characterisitcs of recent natrocarbonatites from Oldoinyo Lengai. In:Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. IAVCEI Proc Volcanol 4: 113–123

  • King BC (1965) Petrogenesis of the alkaline igneous rock suites of the volcanic and intrusive centres of eastern Uganda. J Petrol 6: 67–100

    Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1988) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral Mag 52: 43–55

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite - nephelinite volcanism. Wiley, Chichester, 347p

    Google Scholar 

  • Le Bas MJ (1987) Nephelinites and carbonatites. In:Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc London Sp Pub 30: 53–83

  • Le Bas MJ (1989) Diversification of carbonatites. In:Bell K (ed) Carbonatites - genesis and evolution. Unwin Hyman, London, pp 428–447

    Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, London, 194p

    Google Scholar 

  • Maxwell JA (1968) Rocks and minerals analysis. Intersciences Publishers, New York, 584p

    Google Scholar 

  • Mitchell RH, Brunfelt AO (1975) Rare earth element geochemistry of the Fen alkaline complex, Norway. Contrib Mineral Petrol 52: 247–259

    Google Scholar 

  • Nelson DR, Chivas AR, Chappel BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1–17

    Google Scholar 

  • Powar KB (1981) Lineament fabric and dyke pattern of Deccan volcanic Province. Mem Geol Soc India 3: 45–57

    Google Scholar 

  • Rankin AH, Le Bas MJ (1974) Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature 250: 206–209

    Google Scholar 

  • Ried DL, Cooper AF (1992) Oxygen and carbon isotope patterns in the Dicker Willem carbonatite complex, Southern Namibia. Chem Geol 94: 293–305

    Google Scholar 

  • Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks. Geol Surv Am Bull 1144A, Washington, 56p

    Google Scholar 

  • Simonetti A, Bell K (1994) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malawi: evidence for a depleted mantle source region, liquid immiscibility and open system behaviour. J Petrol 35: 1597–1621

    Google Scholar 

  • Simonetti A, Bell K, Viladkar SG (1995) Isotopic data from the Amba Dungar carbonatite complex, west-central India: evidence for an enriched mantle source. Chem Geol 122: 185–198

    Google Scholar 

  • Srivastava Rajesh K (1989) Evolution of alkaline carbonatitic complex of Ambadungar, Baroda District, Gujarat. Indian J Geochem 4: 1–36

    Google Scholar 

  • Srivastava Rajesh K (1993) Chemical classification of silica rich carbonatites. Indian J Geochem 8: 15–24

    Google Scholar 

  • Srivastava Rajesh K (1994a) Petrochemistry of the fenitized sandstones from Ambadungar carbonatite complex, district Baroda, Gujarat. Indian J Geol 66: 39–44

    Google Scholar 

  • Srivastava Rajesh K (1994b) Petrology, petrochemistry and genesis of the alkaline rocks associated with the Ambadungar carbonatite complex, Baroda district, Gujarat, India. J Geol Soc India 43: 23–39

    Google Scholar 

  • Srivastava Rajesh K, Karkare SG (1989) Sulphide mineralization around Ambadungar, Baroda District, Gujarat. Curr Sci 58: 962–964

    Google Scholar 

  • Srivastava Rajesh K, Hall RP (1995) Tectonic setting of Indian carbonatites. In:Srivastava Rajesh K, Chandra R (eds) Magmatism in relation to diverse tectonic settings. Oxford & IBH Publ, New Delhi, pp 135–154

    Google Scholar 

  • Srivastava Rajesh K, Taylor LA (1996) Carbon- and oxygen-isotope variations in India carbonatites. Int Geol Rev 38: 419–429

    Google Scholar 

  • Straaten P van (1989) Nature and structural relationships of carbonatites from Southwest and West Tanzania. In:Bell K (ed) Carbonatites - genesis and evolution. Unwin Hyman, London, pp 177–199

    Google Scholar 

  • Sukheswala RN, Udas GR (1963) Note on the carbonatite of Ambadungar and its economic potentialities. Science and Culture 29: 563–568

    Google Scholar 

  • Suwa K, Oana S, Wada H, Osaki S (1975) Isotopic geochemistry and petrology of African carbonatites. Phys Chem Earth 9: 735–745

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher Sea district, West Germany and the Alno district, Sweden. Geochim Cosmochim Acta 31: 407–430

    Google Scholar 

  • Vail JR (1978) Further data on the alignment of basic igneous intrusive complexes in Southern and Eastern Africa. Trans Geol Soc S Africa 80: 87–92

    Google Scholar 

  • Viladkar SG (1981) The carbonatites of Ambadungar Gujarat, India. Bull Geol Soc Finland 53: 17–28

    Google Scholar 

  • Viladkar SG (1984) Alkaline rocks associated with carbonatites of Ambadungar, Chhota Udepur, Gujarat, India. Indian Mineralogists-Sukheswala vol, pp 130–135

  • Viladkar SG, Dulski P (1986) Rare earth element abundances in carbonatites, alkaline rocks and fenites of the Ambadungar, Gujarat, India. N Jb Miner Mh H1: 37–48

    Google Scholar 

  • Wood DA, Joron JL, Treuil M, Tarney J (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib Mineral Petrol 70: 319–339

    Google Scholar 

  • Woolley AR (1982) A discussion of carbonatite evolution and nomenclature and the generation of sodic and potassic fenites. Mineral Mag 46: 13–17

    Google Scholar 

  • Woolley AR (1989) The spatial and temporal distribution of carbonatites. In:Bell K (ed) Carbonatites - genesis and evolution. Unwin Hyman, London, pp 15–37

    Google Scholar 

  • Woolley AR, Kemp DRC (1989) Carbonatites: nomenclature, average chemical compositions and element distribution. In:Bell K (ed) Carbonatites - genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Wyllie PJ (1980) The origin of kimberlites. J Geophys Res 85: 6902–6910

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

with 11 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R.K. Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India. Mineralogy and Petrology 61, 47–66 (1997). https://doi.org/10.1007/BF01172477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172477

Keywords

Navigation