Skip to main content
Log in

Eshelby's stress tensors in finite elastoplasticity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This work examines critically the role that the Eshelby (energy-momentum) tensor or its degenerate form, the Mandel stress, should logically play as the driving force in an invariant formulation of the thermomechanics of finite-strain elasto-plasticity. Here the stress measure of which Mandel advocated the use in elastoplasticity, is shown to coincide, up to a sign, with the quasi-static Eshelby stress tensor expressed in the elastically released intermediate configuration. The various “constitutive” representations for the plastic rate are then discussed in terms of various thermodynamically conjugate pairs of “forces” and “velocities” for anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epstein, M., Maugin, G. A.: The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech.83, 127–133 (1990).

    Google Scholar 

  2. Epstein, M., Maugin, G. A.: On the geometrical material structure of anelasticity. Acta Mech.115, 119–131 (1996).

    Google Scholar 

  3. Maugin, G. A.: Material inhomogeneities in elasticity. London: Chapman & Hall 1993.

    Google Scholar 

  4. Maugin, G. A.: Material forces: concepts and applications. Appl. Mech. Rev.48, 213–245 (1995).

    Google Scholar 

  5. Maugin, G. A.: Eshelby stress in elastoplasticity and ductile fracture. Int. J. Plasticity10, 393–408 (1994).

    Google Scholar 

  6. Mandel, J.: Plasticité classique et viscoplasticité. CISM-Udine. Wien New York: Springer 1972.

    Google Scholar 

  7. Cleja-Tigoiu, S., Soós, E.: Elastoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev.43, 131–151 (1990).

    Google Scholar 

  8. Lubliner, J.: Plasticity theory. New York: Macmillan; Collier Macmillen Publ., London 1990.

    Google Scholar 

  9. Maugin, G. A.: The thermomechanics of plasticity and fracture. Cambridge: Cambridge Univ. Press 1992.

    Google Scholar 

  10. Lee, H., Liu, D. T.: Finite strain elastic-plastic theory. In: IUTAM Symp., Vienna 1966. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids. (Parkus H., Sedov, L. I., eds.), pp. 213–222. Wien New York: Springer 1968.

    Google Scholar 

  11. Teodosiu, C., Sidoroff, F.: A finite theory of elastoplasticity of single crystals. Int. J. Engng Sci.14 713–723 (1976).

    Google Scholar 

  12. Halphen, B.: Sur le champ des vitesses en thermoplasticité finie. Int. J. Solids Struct.11, 947–960 (1975).

    Google Scholar 

  13. Halphen, B., Nguyen, Q. S.: Sur les matériaux standard généralisés. J. de Mécanique14, 39–63 (1975).

    Google Scholar 

  14. Besseling, J. F., Van der Giessen, E.: Mathematical modelling of inelastic deformation. London Glasgow New York Tokyo Melbourne Madras: Chapman & Hall 1993.

    Google Scholar 

  15. Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Mat.5, 29–34 (1986).

    Google Scholar 

  16. Cleja-Tigoiu, S.: Large elasto-plastic deformations of materials with relaxed configurations — Part. I. Constitutive assumptions, Part. II. Role of the complementary plastic factor. Int. J. Engng Sci.28, 171–180 and 273–284 (1990).

    Google Scholar 

  17. Loret, B.: On the effects of plastic rotation in finite deformation of anisotropic materials. Mech. Mat.2, 287–304 (1985).

    Google Scholar 

  18. Dafalias, Y. F.: A missing link in the macroscopic constitutive formulation of large plastic deformation. In: Plasticity today (Sawczuk, A., Bianchi, G., eds.), pp. 135–150. London: Applied Science 1985.

    Google Scholar 

  19. Moran, B., Ortiz, M., Shih, F.: Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Meth. Engng29, 483–514 (1990).

    Google Scholar 

  20. Armero, F., Simo, J. C.: A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int. J. Plasticity19, 749–782 (1993).

    Google Scholar 

  21. Liu, I.-S.: On representations of anisotropic invariants. Int. J. Engng Sci.40, 1099–1109 (1982).

    Google Scholar 

  22. Cleja-Tigoiu, S.: Models in multiplicative finite elasto-plasticity. (To be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleja-Tigoiu, S., Maugin, G.A. Eshelby's stress tensors in finite elastoplasticity. Acta Mechanica 139, 231–249 (2000). https://doi.org/10.1007/BF01170191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170191

Keywords

Navigation