Skip to main content
Log in

Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In recent years the role of a convenient objective rate of objective quantities has been passionately discussed. There is a large number of well-justified formulations, e.g., [8], [13], [16]. For an overview of some selected derivatives see, e.g., [21]. However, unreliable results obtained in specific computations [11] complicate the right choice. Moreover, from a physical point of view there exist some additional requirements on time derivatives besides the principle of objectivity [5]. In this paper we try to show that there is a need for using corotational rates. For that purpose we give different approaches. In an application to the aforementioned facts we prove that only the Hencky strain [6] can have an objective corotational rate. We do that by identifying the objective strain rate and the deformation rate. Moreover, the spin involved in this rate is the logarithmic spin as defined in [23].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram, A.: Axiomatische Einführung in die Kontinuumsmechanik. Mannheim: Wissenschaftsverlag 1989.

    Google Scholar 

  2. Bowen, R. M., Wang, C.-C.: Introduction to vectors and tensors, vol. 1+2. New York: Plenum Press 1976.

    Google Scholar 

  3. Dafalias, Y. F.: A missing link in the macroscopic constitutive formulation of large plastic deformations. In: Plasticity today (Sawczuk, A., Bianchi, G., eds.), pp. 135–151, Udine, Italy, 27–30 June, 1983. Proc. International Centre for Mechanical Sciences London: Elsevier 1985.

    Google Scholar 

  4. Eringen, A. C.: Nonlinear theory of continuous media. New York: McGraw-Hill 1962.

    Google Scholar 

  5. Guo, Z.-H.: Time derivatives of tensor fields in nonlinear continuum mechanics. Arch. Mech. Stosow.15, 131–163 (1963).

    Google Scholar 

  6. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys.9, 214–247 (1928).

    Google Scholar 

  7. Hill, R.: On constitutive inequalities for simple materials—I. J. Mech. Phys. Solids16, 229–242 (1968).

    Google Scholar 

  8. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze. Akad. Wiss. Wien Sitzber.IIa, 385–530 (1911).

    Google Scholar 

  9. Lee, E. H.: Finite deformation effects in plasticity analysis. In: Plasticity today (Sawczuk, A., Bianchi, G., eds.), pp. 61–74, Udine, Italy, 27–30 June, 1983. Proc. International Centre for Mechanical Sciences London: Elsevier 1985.

    Google Scholar 

  10. Lehmann, Th.: Zur Beschreibung zeitabhängiger Vorgänge in der klassischen Kontinuumsmechanik. ZAMM42, T108-T110 (1962).

    Google Scholar 

  11. Lehmann, Th.: Anisotrope plastische Formänderungen. Romanian J. Techn. Sci. Appl. Mech.17, 1077–1086 (1972).

    Google Scholar 

  12. Marsden, J. E., Hughes, T. R. J.: Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall 1983.

    Google Scholar 

  13. Naghdi, P. M., Wainwright, W. L.: On the time derivatives of tensors in mechanics of continua. Quart. Appl. Math.19, 95–109 (1961).

    Google Scholar 

  14. Naghdi, P. M.: Recent developments in finite deformation plasticity. In: Plasticity today (Sawczuk, A., Bianchi, G., eds.), pp. 75–83, Udine, Italy, 27–30 June, 1983. Proc. International Centre for Mechanical Sciences London: Elsevier 1985.

    Google Scholar 

  15. Ogden, R. W.: Non-linear elastic deformations. Mineola, New York: Dover 1997.

    Google Scholar 

  16. Oldroyd, J. G.: Finite strains in an anisotropic elastic continuum. Proc. R. Soc. London (A)202, 345–358 (1950).

    Google Scholar 

  17. Prager, W.: An elementary discussion of definitions of stress rate. Q. Appl. Math.18, 403–407 (1960).

    Google Scholar 

  18. Schieße, P.: Einige Bemerkungen zur Kettenregel bei Zeitableitungen isotroper Tensorfunktionen. ZAMM78, 419–425 (1998).

    Google Scholar 

  19. Stumpf, H., Hoppe, U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics-Invited survey article. ZAMM77, 327–339 (1997).

    Google Scholar 

  20. Tsakmakis, C.: Über inkrementelle Materialgleichungen zur Beschreibung großer inelastischer Deformationen. PhD thesis. VDI-Fortschrittsberichte Reihe 18, Nr. 36 Düsseldorf: VDI-Verlag 1987.

    Google Scholar 

  21. Wegener, K.: Zur Berechnung großer plastischer Deformationen mit einem Stoffgesetz vom Überspannungstyp. PhD thesis. Techn. Univ. Braunschweig 1991.

  22. Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Int. J. Solids Struct.32, 3327–3340 (1995).

    Google Scholar 

  23. Xiao, H., Bruhns, O., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech.124, 89–105 (1997).

    Google Scholar 

  24. Zaremba, S.: Sur une forme perfectionée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie124 594–614 (1903).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, A., Schieße, P. & Bruhns, O.T. Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates. Acta Mechanica 139, 91–103 (2000). https://doi.org/10.1007/BF01170184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170184

Keywords

Navigation