Skip to main content
Log in

Triosmium clusters derived from the reactions of thioureas with dodecacarbonyltriosmium: Crystal structures of [Os3(CO)11{η 1-SC(NMe2)2}], [Os3(CO)9(μ-OH)(μ-OMeOCO){η 1-SC(NMe2)2}] and [(μ-H)Os3(CO)9{μ 3-NHC(S)NH2}]

  • Articles
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reaction of [Os3(CO)12] with tetramethylthiourea in the presence of a methanolic solution of Me3NO·2H2O at 60° yields the compounds [Os3(CO)11{η 1-SC(NMe2)2}] (1) in 56% yield and [Os3(CO)9(μ-OH)(μ-MeOCO){η 1-SC(NMe2)2}] (2) in 10% yield in which the tetramethylthiourea ligand is coordinatedvia the sulfur atom at an equatorial position. Compound2 is a 50 e cluster with two metal-metal bonds and the hydroxy and methoxycarbonyl ligands bridging the open metal-metal edge. In contrast, the analogous reaction of [Os3(CO)12] with thiourea gives the compounts [(μ-H)Os3(CO)10{μ-NHC(S)NH2}] (3) in 8% yield and [(μ-H)Os3(CO)9{3-NHC(S)NH2}] (4) in 30% yield. In3, the thioureato ligand bridges two osmium atomsvia the sulfur atom, whereas in4 in addition to the sulfur bridge, one of the nitrogen atoms of thioureato moiety bonds to the remaining osmium atom. The decacarbonyl compounds 3 can also be obtained in 50% yield from the reaction of [Os3(CO)10(MeCN)2] with thiourea at ambient temperature. Compound3 converts to4 (65%) photochemically. Compound1 reacts with PPh3 and acetonitrile at ambient temperature to give the simple substitution products [Os3(CO)11(PPh3)] and [Os3(CO)11(MeCN)], respectively, while with pyridine, the oxidative addition product [(μ-H)Os3(CO)10(μ-NC5H4] is formed at 80°C. All the new compounds are characterized by IR,1-H-NMR and elemental analysis together with the X-ray crystal structures of1,2 and4. Compound1 crystallizes in the triclinic space group P\(P\bar 1\)with unit cell parametersa = 8.626(3) Å,b = 11.639(3) Å,c = 12.568(3_ Å,α = 84.67(2)°,β = 75.36(2)°,γ = 79.49(3)°,V = 1199(1) Å3, andZ = 2. Least-squares refinement of 4585 reflections gave a final agreement factor ofR = 0.0766 (R w = 0.0823). Compound2 crystallizes in the monoclinic space group P21/n with unit cell parametersa = 9.149(5) Å,b = 17.483(5) Å,c = 15.094(4) Å,β = 91.75(2)°,V = 2413(2) Å3, andZ = 4. Least-squares refinement of 3632 reflections gave a final agreement factor ofR = 0.0603 (R w = 0.0802). Compound4 crystallizes in the monoclinic space group C2/c with unit cell parametersa = 13.915(7) Å,b = 14.718(6) Å,c = 17.109(6) Å,β = 100.44(3)°,V = 3446(5) Å3, andZ = 8. Least-squares refinement of 2910 reflections gave a final agreement factor ofR = 0.0763 (R w = 0.0863).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Bodensieck, H. Stoeckli-Evans, and G. Süss-Fink (1990).Chem. Ber. 123, 1603.

    Google Scholar 

  2. U. Bodensieck, J. Santiago, H. Stoeckli-Evans, and G. Süss-Fink (1992).J. Chem. Soc., Dalton Trans. 255.

  3. U. Bodensieck, H. Stoeckli-Evans, and G. Süss-Fink (199).J. Chem. Soc., Chem. Commun. 267.

  4. U. Bodensieck, H. Stoeckli-Evans, and G. Süss-Fink (1992).J. Organomet. Chem. 433, 149; (b) U. Bodensieck, H. Stoeckli-Evans, and G. Süss-Fink (1992).J. Organomet. Chem. 433, 167.

    Article  Google Scholar 

  5. U. Bodensieck, L. Hoferkamp, H. Stoeckli-Evans, G. Rheinwald, and G. Süss-Fink (1993).J. Chem. Soc., Dalton Trans., 127.

  6. E. Boroni, G. Predieru, A. Tirripicchio, and M. Tirripicchio Camellini (1993).J. Organometal. Chem. 451, 163.

    Article  Google Scholar 

  7. E. W. Ainscough, A. M. Brodie, S. L. Ingham, T. G. Kotch, A. J. Lees, L. Lewis, and J. M. Waters (1994).J. Chem. Soc., Dalton Trans. 1.

  8. J. A. Clucas, D. F. Foster, M. M. Harding, and A. K. Smith (1984).J. Chem. Soc., Chem. Commun. 949; (b) S. Cartwright, J. A. Clucas, R. H> Dawson, D. F. Foster, M. M. Harding, and A. K. Smith (1986).J. Organometal. Chem. 302, 403.

  9. M. R. Churchill and B. G. DeBoer (1977).Inorg. Chem. 16, 828.

    Article  Google Scholar 

  10. R. D. Adams and M. P. Pompeo (1990).Organometallics 9, 1718.

    Article  Google Scholar 

  11. R. D. Adams, N. M. Adams, N. M. Golembeski, and J. P. Selegue (1981).J. Am. Chem. Soc. 103, 546; (b) R. D. Adams, Z. Dawoodi, D. F. Foust, and B. E. Segmüller (1983).Organometallics 2, 315; (c) R. D. Adams, D. A. Katahira, and L. W. Yang (1982).Organometallics 1, 235.

    Article  Google Scholar 

  12. H. D. Holden, B. F. G. Johnson, J. Lewis, P. R. Raithby, and G. Uden (1983).Acta Crystallogr. Sec. C39, 1200; (b) A. M. Brodie, H. D. Holden, J. Lewis, and M. J. Taylor (1986).J. Chem. Soc., Dalton Trans. 633.

    Google Scholar 

  13. V. F. Allen, R. Mason, and P. B. Hitchcock (1977).J. Organomet. Chem. 140, 297.

    Article  Google Scholar 

  14. A. Mangia and G. Pelizzi (1973).Cryst. Struct. Commun. 2, 77.

    Google Scholar 

  15. A. C. Bonamartini, A. Mangia, and G. Pelizzi (1973)Cryst. Struct. Commun. 2, 73.

    Google Scholar 

  16. M. B. Ferrari, A. B. Corradi, G. Fava, C. G. Palmieri, M. Nardelli, and C. Pelizzsi (1973).Acta Crystallogr. B29, 1808.

    Google Scholar 

  17. C. M. Jensen, C. B. Knobler, and H. D. Kaesz (1984).J. Am. Chem. Soc. 106, 5926; (b) C. M. Jensen, T. J. Lynch, C. B. Knobler, and H. D. Kaesz (1982).J. Am. Chem. Soc. 104, 4679.

    Article  Google Scholar 

  18. A. J. Arce, P. Arrojo, A. J. Deeming, and Y. De Sanctis (1991).J. Chem. Soc., Chem. Commun. 1491.

  19. B. F. G. Johnson, J. Lewis, P. R. Raithby, and T. I. Odiaka (1981).J. Organomet. Chem. 216, C56.

    Article  Google Scholar 

  20. G. Ferraris and G. Gervasio (1974)J. Chem. Soc., Dalton Trans. 1813.

  21. C. G. Pierpont (1977).Inorg. Chem. 16, 636.

    Article  Google Scholar 

  22. A. J. Deeming, S. Hasso, P. J. Manning, K. Henrick, and M. McPartlin (1982).J. Chem. Soc., Dalton Trans. 899.

  23. A. J. Deeming, P. J. Manning, L. P. Rothwell, M. B. Hursthouse, and N. P. C. Walker (1984).J. Chem. Soc., Dalton Trans. 2039.

  24. S. R. Hodge, B. F. G. Johnson, J. Lewis, and P. R. Raithby (1987).J. Chem. Soc., Dalton Trans. 931.

  25. A. J. Deeming (1986)_Adv. Organomet. Chem. 26, 1.

    Google Scholar 

  26. P. C. Ford and A. Rokicki (1988).Adv. Organomet. Chem. 28, 139.

    Google Scholar 

  27. E. Rosenberg, S. E. Kabir, K. I. Hardcastle, M. Day, and E. Wolf (1990)Organometallics 9, 2214; (b) S. E. Kabir, M. Day, M. Irving, T. McPhillips, H. Minassian, E. Rosenberg, and K. I. Hardcastle (1991).Organometallics 10, 3997.

    Article  Google Scholar 

  28. M. I. Bruce, D. C. Kehoe, J. G. Matisons, B. K. Nicholson, P. H. Rieger, and M. L. Williams (1982).J. Chem. Soc., Chem. Commun. 442.

  29. B. F. G. Johnson, J. Lewis, and D. A. Pippard (1981).J. Chem. Soc., Dalton Trans. 407.

  30. C. C. Yin, and D. J. Deeming (1975).J. Chem. Soc., Dalton Trans. 2091.

  31. A. G. Yin, Orpen (1980).J. Chem. Soc., Dalton Trans. 2509.

  32. G. W. Frank and P. Degen (1973).Acta Crystallogr. B29, 1815; (b) G. Vallee, V. Busetti, M. Mammi, and G. Carrazolo (1969).Acta Crystallogr. B25, 1432; (c)_ J. E. Fleming and H. Lynton (1967).Can. J. Chem. 45, 353.

    Google Scholar 

  33. P. Piraino, G. Bruno, G. Tresoldi, G. Faraone, and G. Bombieri (1983).J. Chem. Soc., Dalton Trans. 2391.

  34. B. A. Cartwright, P. O. Langguth, Jr., and A. C. Skapski (1979).Acta Crystallogr. B35, 63.

    Google Scholar 

  35. U. Bodensieck, Y., Carraux, H. Stoeckli-Evans, and G. Süss-Fink (1992).Inrog. Chim. Acta. 195, 135.

    Article  Google Scholar 

  36. G. M. Sheldrick (1990).Acta Crystallogr. A46, 467.

    Google Scholar 

  37. C. K. Fair,MOLEN, An Interactive Structure Solution Procedure (Enraf-Nonius, Delft, The Netherlands (1990).

    Google Scholar 

  38. D. T. Cromer and J. T. Waber,International Tables fo X-Ray Crystallography Vol. IV, Table 2.2B (Kynoch Press Birmingham, England, 1974).

    Google Scholar 

  39. D. T. CromerInternational Tables for X-ray Crystallography, Vol. IV, Table 2.3.1 (Kynoch Pres Birmingham, England, 1974).

    Google Scholar 

  40. J. A. Darr, S. R. Drake, M. B. Hursthouse, and K. M. A. Malik (1993).Inorg. Chem. 32, 5704.

    Article  Google Scholar 

  41. G. M. SheldrickSHELXL-93 Program for Crystal Structure Refinement (University of Göttingen, Germany, 1993).

    Google Scholar 

  42. N. P. C. Walker and D. Stuart (1983).Acta Crystallogr. A39, 158 (adapted for FAST geometry by A. Karaulov, University of Wales, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azam, K.A., Dilshad, R., Kabir, S.E. et al. Triosmium clusters derived from the reactions of thioureas with dodecacarbonyltriosmium: Crystal structures of [Os3(CO)11{η 1-SC(NMe2)2}], [Os3(CO)9(μ-OH)(μ-OMeOCO){η 1-SC(NMe2)2}] and [(μ-H)Os3(CO)9{μ 3-NHC(S)NH2}]. J Clust Sci 7, 49–70 (1996). https://doi.org/10.1007/BF01166176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166176

Keywords

Navigation